Current Approach to Potential Alpha Particle Emiting Radionuclides for Alpha Radionuclide Therapy
PDF
Cite
Share
Request
Review
P: 7-15
March 2023

Current Approach to Potential Alpha Particle Emiting Radionuclides for Alpha Radionuclide Therapy

Nucl Med Semin 2023;9(1):7-15
1. Ege Üniversitesi Nükleer Bilimler Enstitüsü, Nükleer Uygulamalar Anabilim Dalı, İzmir, Türkiye
No information available.
No information available
Publish Date: 17.04.2023
PDF
Cite
Share
Request

ABSTRACT

Having a short range and high linear energy transfer, alpha (α)-particle-releasing radionuclides show high cell lethality. Despite the existence of a large number of radionuclides that decay by α-particle release, only a few of them can be used for therapeutic purposes. Factors related to physical properties such as radionuclide availability and half-life may or may not limit their widespread use. This article will focus on the diversity of α-emitters, their basic radiochemistry, limiting factors and difficulties in their use.

References

1Boll RA, Malkemus D, Mirzadeh S. Production of actinium-225 for alpha particle mediated radioimmunotherapy. Appl Radiat Isot 2005;62:667-679.
2Kratochwil C, Bruchertseifer F, Giesel FL, et al. 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J Nucl Med 2016;57:1941-1944.
3Baidoo KE, Yong K, Brechbiel MW. Molecular pathways: targeted α-particle radiation therapy. Clin Cancer Res 2013;19:530-537.
4Søyland C, Hassfjell SP. Survival of human lung epithelial cells following in vitro alpha-particle irradiation with absolute determination of the number of alpha-particle traversals of individual cells. Int J Radiat Biol 2000;76:1315-1322.
5Zhou H, Hong M, Chai Y, Hei TK. Consequences of cytoplasmic irradiation: studies from microbeam. J Radiat Res 2009;50 Suppl A(0 0):A59-65.
6Haberkorn U, Giesel F, Morgenstern A, Kratochwil C. The Future of Radioligand Therapy: α, β, or Both? J Nucl Med 2017;58:1017-1018.
7Behling K, Maguire WF, Puebla JCL, et al. Vascular Targeted Radioimmunotherapy for the Treatment of Glioblastoma. J Nucl Med 2016;57:1576-1582.
8Behling K, Maguire WF, Di Gialleonardo V, et al. Remodeling the Vascular Microenvironment of Glioblastoma with α-Particles. J Nucl Med 2016;57:1771-1777.
9Blower PJ. A nuclear chocolate box: the periodic table of nuclear medicine. Dalton Trans 2015;44:4819-4844.
10Poty S, Francesconi LC, McDevitt MR, Morris MJ, Lewis JS. α-Emitters for Radiotherapy: From Basic Radiochemistry to Clinical Studies-Part 1. J Nucl Med 2018;59:878-884.
11Hatcher-Lamarre JL, Sanders VA, Rahman M, Cutler CS, Francesconi LC. Alpha emitting nuclides for targeted therapy. Nucl Med Biol 2021;92:228-240.
12Kim YS, Brechbiel MW. An overview of targeted alpha therapy. Tumour Biol 2012;33:573-590.
13Sgouros G, Ballangrud ÅM, Jurcic JG, et al. Pharmacokinetics and dosimetry of an alpha-particle emitter labeled antibody: 213Bi-HuM195 (anti-CD33) in patients with leukemia. J Nucl Med 1999;40:1935-1946.
14Thiele NA, Wilson JJ. Actinium-225 for Targeted α Therapy: Coordination Chemistry and Current Chelation Approaches. Cancer Biother Radiopharm 2018;33:336-348.
15Mastren T, Radchenko V, Owens A, et al. Simultaneous Separation of Actinium and Radium Isotopes from a Proton Irradiated Thorium Matrix. Sci Rep 2017;7:8216.
16Suominen MI, Fagerlund KM, Rissanen JP, et al. Radium-223 Inhibits Osseous Prostate Cancer Growth by Dual Targeting of Cancer Cells and Bone Microenvironment in Mouse Models. Clin Cancer Res 2017;23:4335-4346.
17Ritter MA, Cleaver JE, Tobias CA. High-LET radiations induce a large proportion of non-rejoining DNA breaks. Nature 1977;266:653-655.
18Pandit-Taskar N, Larson SM, Carrasquillo JA. Bone-seeking radiopharmaceuticals for treatment of osseous metastases, Part 1: α therapy with 223Ra-dichloride. J Nucl Med 2014;55:268-274.
19Du Y, Carrio I, De Vincentis G, et al. Practical recommendations for radium-223 treatment of metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 2017;44:1671-1678.
20Bosley RB, Simpson JA. Choice of alpha-probe operating voltage to suit a wide range of conditions. J Radiol Prot 2002;22:293-303.
21Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica 1976;A32:751-767.
22Zielińska B, Bilewicz A. The hydrolysis of actinium. J Radioanal Nucl Chem 2004;261: 195-198.
23Ferrier MG, Stein BW, Batista ER, et al. Synthesis and Characterization of the Actinium Aquo Ion ACS Cent Sci 2017;3:176-185.
24Beyer GJ, Bergmann R, Schomäcker K, et al. Comparison of the Biodistribution of 225Ac and Radio-Lanthanides as Citrate Complexes. Isotopes Environmental and Health Studies 1990;26:111-114.
25McDevitt MR, Ma D, Simon J, Frank RK, Scheinberg DA. Design and synthesis of 225Ac radioimmunopharmaceuticals. Appl Radiat Isot 2002;57:841-847.
26Henriksen G, Bruland OS, Larsen RH. Thorium and actinium polyphosphonate compounds as bone-seeking alpha particle-emitting agents. Anticancer Res 2004;24:101-105.
27Thiele NA, Brown V, Kelly JM, et al. An Eighteen-Membered Macrocyclic Ligand for Actinium-225 Targeted Alpha Therapy. Angew Chem Int Ed Engl 2017;56:14712-14717.
28McDevitt MR, Ma D, Lai LT, et al. Tumor therapy with targeted atomic nanogenerators. Science 2001;294:1537-1540.
29Wu Ling S, Horrocks WD. Direct determination of stability constants of lanthanide ion chelates by laser-excited europium(III) luminescence spectroscopy: application to cyclic and acyclic aminocarboxylate complexes. J. Am. Chem. Soc 1997;9:1497-1502.
30Chappell LL, Deal KA, Dadachova E, Brechbiel MW. Synthesis, conjugation, and radiolabeling of a novel bifunctional chelating agent for (225)Ac radioimmunotherapy applications. Bioconjug Chem 2000;11:510-519.
31Miederer M, Henriksen G, Alke A, et al. Preclinical evaluation of the alpha-particle generator nuclide 225Ac for somatostatin receptor radiotherapy of neuroendocrine tumors. Clin Cancer Res 2008;14:3555-3561.
32EANM'15, 28th Annual EANM Congress of the European Association of Nuclear Medicine 2015, 10--14 October 2015, Hamburg, Germany. Eur J Nucl Med Mol Imaging 2015;42 Suppl 1:S1-924.
33Majkowska-Pilip A, Rius M, Bruchertseifer F, et al. In vitro evaluation of 225 Ac-DOTA-substance P for targeted alpha therapy of glioblastoma multiforme. Chem Biol Drug Des 2018;92:1344-1356.
34McAlister DR, Horwitz EP. Chromatographic generator systems for the actinides and natural decay series elements. Radiochim Acta 2011;99:151-159.
35Davis IA, Glowienka KA, Boll RA, et al. Comparison of 225actinium chelates: tissue distribution and radiotoxicity. Nucl Med Biol 1999;26:581-589.
36Natrajan LS, Swinburne AN, Andrews MB, Randall S, Heath SL. Redox and environmentally relevant aspects of actinide(IV) coordination chemistry. Coord Chem Rev 2014;266–267:171-193.
37Tutson CD, Gorden AEV. Thorium coordination: A comprehensive review based on coordination number. Coord Chem Rev 2017;333:27-43.
38Kukleva E, Kozempel J, Vlk M, Micolova P, Vopalka D. Preparation of 227Ac/223Ra by neutron irradiation of 226Ra. Journal of Radioanalytical and Nuclear Chemistry 2014;304:263-266.
39Hogle S, Boll RA, Murphy K, et al. Reactor production of Thorium-229. Appl Radiat Isot 2016;114:19-27.
40Dahle J, Borrebæk J, Melhus KB, et al. Initial evaluation of (227)Th-p-benzyl-DOTA-rituximab for low-dose rate alpha-particle radioimmunotherapy. Nucl Med Biol 2006;33:271-279.
41Webb OF, Boll RA, Lucero AJ, DePaoli DW. Purification of thorium from uranium-233 process residue. Sep Sci Technol 1999;34:975-985.
42Pippin CG, Mcmurry TJ, Brechbiel MW, et al. Lead (II) complexes of 1, 4, 7, 10-tetraazacyclododecane-N, N′, N ″, N‴- tetraacetate: solution chemistry and application to tumor localization with 203Pb labeled monoclonal antibodies. Inorganica Chim. Acta 1995, 239 (1-2), 43-51. 1995;239: 43–51.
43Frenvik JO, Dyrstad K, Kristensen S, Ryan OB. Development of separation technology for the removal of radium-223 from targeted thorium conjugate formulations. Part II: purification of targeted thorium conjugates on cation exchange columns. Drug Dev Ind Pharm 2017;43:1440-1449.
44Abbas N, Bruland ØS, Brevik EM, Dahle J. Preclinical evaluation of 227Th-labeled and 177Lu-labeled trastuzumab in mice with HER-2-positive ovarian cancer xenografts. Nucl Med Commun 2012;33:838-847.
45Hagemann UB, Mihaylova D, Uran SR, et al. Targeted alpha therapy using a novel CD70 targeted thorium-227 conjugate in in vitro and in vivo models of renal cell carcinoma. Oncotarget 2017;8:56311-56326.
46Hagemann UB, Wickstroem K, Wang E, et al. In Vitro and In Vivo Efficacy of a Novel CD33-Targeted Thorium-227 Conjugate for the Treatment of Acute Myeloid Leukemia. Mol Cancer Ther 2016;15:2422-2431.
Article is only available in PDF format. Show PDF
2024 ©️ Galenos Publishing House