ABSTRACT
Myocardial perfusion scintigraphy has long been utilized as a non-invasive imaging modality for the clinical assessment of coronary artery disease. This technique involves the assessment of myocardial cell perfusion by evaluating images obtained following the injection of radiopharmaceuticals, allowing for the identification of ischemic or infarcted areas. Additionally, it provides the opportunity to assess parameters such as wall motion and thickening through images synchronized with electrocardiography. Due to the complex physiological processes reflected in the myocardium by this imaging technique, it encompasses a range of potential pitfalls and artifacts that could lead to misinterpretations, resulting in false-positive or false-negative evaluations. Therefore, it is imperative that the entire team involved in both the preparation of patients and the imaging process possesses knowledge to anticipate, preferably prevent, or rectify potential issues. This review aims to discuss pitfalls and artifacts that may arise at various stages of myocardial perfusion scintigraphy, potentially leading to misinterpretations of the examination. Furthermore, it provides insights into precautions that should be taken and potential solutions when possible.
Keywords:
Cardiac imaging, SPECT, myocardial perfusion scintigraphy, artifacts
References
1Klocke FJ, Baird MG, Lorell BH, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging-executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J Am Coll Cardiol 2003;42:1318-1333.
2Sun X, Liu A, Jiang Z. The sensitivity and specificity of single photon emission computed tomography (SPECT) in the diagnosis coronary artery disease (CAD): a meta-analysis. Int J Clin Exp Med 2017;10:6221-6366.
3Strauss HW, Miller DD, Wittry MD, et al. Procedure guideline for myocardial perfusion imaging 3.3. J Nucl Med Technol 2008;36:155-161.
4Canbaz Tosun F, Özdemir S, Şen F, Demir H, Özdemir E, Durmuş Altun G. Myocardial Perfusion SPECT Procedure Guideline. Nucl Med Semin 2020;6:90-134.
5Lapeyre AC, Goraya TY, Johnston DL, Gibbons RJ. The impact of caffeine on vasodilator stress perfusion studies. J Nucl Cardiol 2004;11:506-511.
6Burrell S, MacDonald A. Artifacts and pitfalls in myocardial perfusion imaging. J Nucl Med Technol 2006;34:193-211.
7Williams KA, Hill KA, Sheridan CM. Noncardiac findings on dual-isotope myocardial perfusion SPECT. J Nucl Cardiol 2003;10:395-402.
8Abdel-Dayem HM. Current tumor imaging agents. In: Aktolun C, Tauxe WN, eds. Nuclear Oncology. Berlin, Germany: Springer-Verlag; 1999:401-414.
9Nichols K, Dorbala S, DePuey EG, Yao SS, Sharma A, Rozanski A. Influence of arrhythmias on gated SPECT myocardial perfusion and function quantification. J Nucl Med 1999;40:924-934.
10Nichols K, Yao SS, Kamran M, Faber TL, Cooke CD, DePuey EG. Clinical impact of arrhythmias on gated SPECT cardiac myocardial perfusion and function assessment. J Nucl Cardiol 2001;8:19-30.
11Heinle I, Siraj Q. Artefacts and Pitfalls in Myocardial Perfusion Imaging. In: Movahed, A., Gnanasegaran G, Buscombe J, Hall M (eds). Integrating Cardiology for Nuclear Medicine Physicians. Springer, Berlin, Heidelberg; 2009.
12Groch MW, Erwin WD. Single-photon emission computed tomography in the year 2001: instrumentation and quality control. J Nucl Med Technol 2001;29:12-18.
13Hines H, Kayayan R, Colsher J, et al. National Electrical Manufacturers Association recommendations for implementing SPECT instrumentation quality control. J Nucl Med Technol 1999;27:67-72.
14Dönmez S, Ayan A, Parlak Y, et al. Acceptance and Quality Control Tests for the Single Photon Emission Computerized Tomography (SPECT) Gamma Cameras and SPECT/CT Systems. Nucl Med Semin 2020;6:38-50.
15Dvorak RA, Brown RK, Corbett JR. Interpretation of SPECT/CT myocardial perfusion images: common artifacts and quality control techniques. Radiographics 2011;31:2041-2057.
16Georgoulias P, Valotassiou V, Tsougos I, et al. Clinical significance of tetrofosmin in extracardiac uptake during myocardial perfusion imaging. In: Branislav PB, eds. Coronary angiography-advances in noninvasive imaging approach for evaluation of coronary artery disease, chap 2. InTech; 2011.
17Hofman M, McKay J, Nandurkar D. Efficacy of milk versus water to reduce interfering infra-cardiac activity in 99mTc-sestamibi myocardial perfusion scintigraphy. Nucl Med Commun 2006;27:837-842.
18Malek H, Hedayati R, Yaghoobi N, Bitarafan-Rajabi A, Firoozabadi SH, Rastgou F. The effect of milk, water and lemon juice on various subdiaphragmatic activity-related artefact in myocardial perfusion imaging. Res Cardiovasc Med 2015;4:e29235.
19Hussain S, Sultan FAT. Role of carbonated water technique to enhance Tc-99m tetrofosmin myocardial perfusion imaging by reducing subdiaphragmatic artefacts. Ann Nucl Med 2020;34:787-792.
20Stathaki M, Koukouraki S, Papadaki E, Tsaroucha A, Karkavitsas N. The benefits of prone SPECT myocardial perfusion imaging in reducing both artefact defects and patient radiation exposure. Arq Bras Cardiol 2015;105:345-352.
21Cooper JA, Neumann PH, McCandless BK. Effect of patient motion on tomographic myocardial perfusion imaging. J Nucl Med 1992;33:1566-1571.
22Wheat JM, Currie GM. Impact of patient motion on myocardial perfusion SPECT diagnostic integrity: Part 2. J Nucl Med Technol 2004;32:158-163.
23Friedman J, Van Train K, Maddahi J, et al. “Upward creep” of the heart: a frequent source of false-positive reversible defects during thallium-201 stress-redistribution SPECT. J Nucl Med 1989;30:1718-1722.
24Germano G. Technical aspects of myocardial SPECT imaging. J Nucl Med 2001;42:1499-1507.
25Ramos SMO, Glavam AP, de Brito ASX, et al. Prone Myocardial Perfusion Imaging and Breast Attenuation: A Phantom Study. Curr Med Imaging Rev 2020;16:70-79.
26Miles J, Cullom SJ, Case JA. An introduction to attenuation correction. J Nucl Cardiol 1999;6:449-457.
27Heller GV, Links J, Bateman TM, et al. American Society of Nuclear Cardiology/Society of Nuclear Medicine joint position statement: attenuation correction of myocardial perfusion SPECT scintigraphy. J Nucl Cardiol 2004;11:229-230.
28Tawakol AE, Tantawy HM, Elashmawy RE, Abdelhafez YG, Elsayed YM. Added Value of CT Attenuation Correction and Prone Positioning in Improving Breast and Subdiaphragmatic Attenuation in Myocardial Perfusion Imaging. J Nucl Med Technol 2021;49:23-29.
29Płachcińska A, Włodarczyk M, Drożdż J, et al. Effect of CT misalignment on attenuation--corrected myocardial perfusion SPECT. Nucl Med Rev Cent East Eur 2015;18:78-83.
30Hansen CL. The conundrum of left bundle branch block. J Nucl Cardiol 2004;11:90-92.
31Yalçın H, Canbaz Tosun F. Nuclear Cardiology in the Diagnosis and Management of Coronory Artery Disease. Nucl Med Semin 2019;4:80-95.
32Wynne J, Braunwald E. The cardiomyopathies and cyocarditides. In: Braunwald E, Zipes DP, Libby P, eds. Heart Disease: A Textbook of Cardiovascular Medicine. 6th ed. Philadelphia, PA: W.B. Saunders; 2001:1751-1806.
33Qutbi M. SPECT myocardial perfusion imaging in patients with Dextrocardia. J Nucl Cardiol 2019;26:1197-1204.
34Yapici O, Baris S, Alic T, Basoglu T. Auto-contouring at 90 degrees dual head fitting angle: a potential cause of a myocardial perfusion SPET artifact in slim patients. Hell J Nucl Med 2009;12:289-290.
35Katsuragi M, Yamamoto K, Tashiro T, Nishihara H, Toudou K. Thallium-201 myocardial SPECT in Bland-White-Garland syndrome: two adult patients with inferoposterior perfusion defect. J Nucl Med 1993;34:2182-2184.
36Kataoka T, Shih WJ. False-positive myocardial perfusion scintigraphy in syndrome X. Semin Nucl Med 1997;27:186-189.