Drug-induced Changes on the Biodistribution of Theranostic Radiopharmaceuticals
PDF
Cite
Share
Request
Review
P: 49-57
March 2023

Drug-induced Changes on the Biodistribution of Theranostic Radiopharmaceuticals

Nucl Med Semin 2023;9(1):49-57
1. İstanbul Üniversitesi-Cerrahpaşa, Cerrahpaşa Eczacılık Fakültesi, Farmakoloji Anabilim Dalı, İstanbul, Türkiye
No information available.
No information available
Publish Date: 17.04.2023
PDF
Cite
Share
Request

ABSTRACT

The concept of theranostic refers to the combination of diagnosis and treatment of diseases. The mechanism of the theranostic approach is to visualize the basic physiological pathways and pathophysiology of diseases through the expression of targets such as receptors, membrane transporters or specific antigens and to perform treatment with ionizing radiation to the target. Concomitant use of drugs is a common occurrence in the clinic, and one of the most common problems with nuclear medicine theranostics, with their widespread use in oncology, is undesirable and unexpected drug-induced changes in biodistribution profiles. Biodistribution may change as a result of the pharmacological effects of drugs or physicochemical and biochemical interactions between drugs and theranostic agents, and these changes may have clinical significance that may affect process safety, accuracy of diagnostic imaging results, and treatment process. As the knowledge about potential interaction mechanism increases, undesirable interactions that may occur during the diagnosis and treatment process can be minimized. Our aim is to compile drug-related changes on the biodistribution of theranostic radiopharmaceuticals and to show potential interactions, mechanisms, possible consequences and how these interactions can be eliminated, thus contributing to patient safety throughout the process with accurate diagnosis and treatment.

References

1Hricak H. Oncologic imaging: a guiding hand of personalized cancer care. Radiology 2011;259:633-640.
2Jadvar H, Chen X, Cai W, Mahmood U. Radiotheranostics in Cancer Diagnosis and Management. Radiology 2018;286:388-400.
3Funkhouser J. Reinventing pharma: the theranostic revolution. Current Drug Discovery 2002;(AUG.):17-19.
4Gomes Marin JF, Nunes RF, Coutinho AM, et al. Theranostics in Nuclear Medicine: Emerging and Re-emerging Integrated Imaging and Therapies in the Era of Precision Oncology. Radiographics 2020;40:1715-1740.
5Shende P. Gandhi S. Current strategies of radiopharmaceuticals in theranostic applications. J Drug Deliv Sci Technol 2021;64:102504.
6Hevesy G. The Absorption and Translocation of Lead by Plants: A Contribution to the Application of the Method of Radioactive Indicators in the Investigation of the Change of Substance in Plants. Biochem J 1923;17:439-445.
7Czernin J, Sonni I, Razmaria A, Calais J. The Future of Nuclear Medicine as an Independent Specialty. J Nucl Med 2019;60(Suppl 2):3S-12S.
8Vallabhajosula S, Killeen RP, Osborne JR. Altered biodistribution of radiopharmaceuticals: role of radiochemical/pharmaceutical purity, physiological, and pharmacologic factors. Semin Nucl Med 2010;40:220-241.
9Lentle BC, Scott JR, Noujaim AA, Jackson FI. Iatrogenic alterations in radionuclide biodistributions. Semin Nucl Med 1979;9:131-143.
10Hladik WB 3rd, Nigg KK, Rhodes BA. Drug-induced changes in the biologic distribution of radiopharmaceuticals. Semin Nucl Med 1982;12:184-218.
11Hesslewood S, Leung E. Drug interactions with radiopharmaceuticals. Eur J Nucl Med 1994;21:348-356.
12Sampson CB. Adverse reactions and drug interactions with radiopharmaceuticals. Drug Saf 1993;8:280-294.
13Sampson CB, Cox PH. Effect of patient medication and other factors on the biodistribution of radiopharmaceuticals, in Sampson CB (ed). Texbook of Radiopharmacy, Theory and Practice.2nd Edition. Amsterdam, Gordon: Breach Science Publishers; 1994. pp 215-227.
14Tannenbaum C, Sheehan NL. Understanding and preventing drug-drug and drug-gene interactions. Expert Rev Clin Pharmacol 2014;7:533-544.
15Lentle, B., Attariwila, R., Lyster, D. Drug-Induced Changes in Radiopharmaceutical Biodistributions. Correspondence Continuing Education Courses for Nuclear Pharmacists and Nuclear Medicine Professionals; 2004.
16Silberstein EB. Radioiodine: the classic theranostic agent. Semin Nucl Med 2012;42:164-170.
17Seidlin SM, Marinelli LD, Oshry E. Radioactive iodine therapy; effect on functioning metastases of adenocarcinoma of the thyroid. J Am Med Assoc 1946;132:838-847.
18Silberstein EB, Alavi A, Balon HR, et al. The SNMMI practice guideline for therapy of thyroid disease with 131I 3.0. J Nucl Med 2012;53:1633-1651.
19Intenzo CM, Dam HQ, Manzone TA, Kim SM. Imaging of the thyroid in benign and malignant disease. Semin Nucl Med 2012;42:49-61.
20Yordanova A, Eppard E, Kürpig S, et al. Theranostics in nuclear medicine practice. Onco Targets Ther 2017;10:4821-4828.
21Drude N, Tienken L, Mottaghy FM. Theranostic and nanotheranostic probes in nuclear medicine. Methods 2017;130:14-22.
22Sisson JC, Yanik GA. Theranostics: evolution of the radiopharmaceutical meta-iodobenzylguanidine in endocrine tumors. Semin Nucl Med 2012;42:171-184.
23Parisi MT, Eslamy H, Park JR, Shulkin BL, Yanik GA. ¹³¹I-Metaiodobenzylguanidine Theranostics in Neuroblastoma: Historical Perspectives; Practical Applications. Semin Nucl Med 2016;46:184-202.
24Sternthal E, Lipworth L, Stanley B, Abreau C, Fang SL, Braverman LE. Suppression of thyroid radioiodine uptake by various doses of stable iodide. N Engl J Med 1980;303:1083-1088.
25Santos-Oliveira R. Radiopharmaceutical drug interactions. Rev Salud Publica (Bogota) 2008;10:477-487.
26Park JT 2nd, Hennessey JV. Two-week low iodine diet is necessary for adequate outpatient preparation for radioiodine rhTSH scanning in patients taking levothyroxine. Thyroid 2004;14:57-63.
27Tuttle MR. Differentiated thyroid cancer: Radioiodine treatment. Ross DS, editor., EDec J, deputy editor. Sep 09, 2022.
28Pala Kara Z. Radyofarmasötiklerde İlaç Etkileşimleri. İçinde: Uygulamalı Temel Radyofarmasi. Editörler Ünak P. Durmuş Altun G. Teksöz S. Biber Müftüler Z. İstanbul: Nobel Tıp Kitabevleri; 2017. sayfa. 89-99.
29Li JH, He ZH, Bansal V, Hennessey JV. Low iodine diet in differentiated thyroid cancer: a review. Clin Endocrinol (Oxf) 2016;84:3-12.
30Jacobson AF, Travin MI. Impact of medications on mIBG uptake, with specific attention to the heart: Comprehensive review of the literature. J Nucl Cardiol 2015;22:980-993.
31Solanki KK, Bomanji J, Moyes J, Mather SJ, Trainer PJ, Britton KE. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nucl Med Commun 1992;13:513-521.
32Kratochwil C, Haberkorn U, Giesel FL. Radionuclide Therapy of Metastatic Prostate Cancer. Semin Nucl Med 2019;49:313-325.
33Murphy KJ, Line BR, Malfetano J. Etidronate therapy decreases the sensitivity of bone scanning with methylene diphosphonate labelled with technetium-99m. Can Assoc Radiol J 1997;48:199-202.
34Hommeyer SH, Varney DM, Eary JF. Skeletal nonvisualization in a bone scan secondary to intravenous etidronate therapy. J Nucl Med 1992;33:748-750.
35DeMeo JH, Balseiro J, Cole TJ. Etidronate sodium therapy--a cause of poor skeletal radiopharmaceutical uptake. Semin Nucl Med 1991;21:332-334.
36Sandler ED, Parisi MT, Hattner RS. Duration of etidronate effect demonstrated by serial bone scintigraphy. J Nucl Med 1991;32:1782-1784.
37Krasnow AZ, Collier BD, Isitman AT, Hellman RS, Ewey D. False-negative bone imaging due to etidronate disodium therapy. Clin Nucl Med 1988;13:264-267.
38Ziewacz JT, Slavin JD Jr, Spencer RP. Unusual scintigraphic findings in a case of treated monostotic Paget's disease. Clin Nucl Med 1988;13:93-95.
39Draximage MDP (technetium Tc 99m medronate) [product monograph]. Kirkland, Quebec, Canada: Jubilant DraxImage Inc; May 2022.
40Carrasquillo JA, Whatley M, Dyer V, Figg WD, Dahut W. Alendronate does not interfere with 99mTc-methylene diphosphonate bone scanning. J Nucl Med 2001;42:1359-1363.
41Koizumi M, Ogata E. Bisphosphonate effect on bone scintigraphy. J Nucl Med 1996;37:401.
42Macro M, Bouvard G, Le Gangneux E, Colin T, Loyau G. Intravenous aminohydroxypropylidene bisphosphonate does not modify 99mTc-hydroxymethylene bisphosphonate bone scintigraphy. A prospective study. Rev Rhum Engl Ed 1995;62:99-104.
43Pecherstorfer M, Schilling T, Janisch S, et al. Effect of clodronate treatment on bone scintigraphy in metastatic breast cancer. J Nucl Med 1993;34:1039-1044.
44Mazzole AC, Barker MM, Belliveal RE. Accumulation of tc-99m-diphosphonate at sites of intramuscular iron therapy. J Nucl Med Tech 1976;4:133-135.
45de Herder WW, Kwekkeboom DJ, Valkema R, et al. Neuroendocrine tumors and somatostatin: imaging techniques. J Endocrinol Invest 2005;28(11 Suppl International):132-136.
46Anthony LB, Woltering EA, Espenan GD, Cronin MD, Maloney TJ, McCarthy KE. Indium-111-pentetreotide prolongs survival in gastroenteropancreatic malignancies. Semin Nucl Med 2002;32:123-132.
47Smit Duijzentkunst DA, Kwekkeboom DJ, Bodei L. Somatostatin Receptor 2-Targeting Compounds. J Nucl Med 2017;58(Suppl 2):54S-60S.
48Bodei L, Herrmann K, Schöder H, Scott AM, Lewis JS. Radiotheranostics in oncology: current challenges and emerging opportunities. Nat Rev Clin Oncol 2022;19:534-550.
49Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med 2017;376:125-135.
50Strosberg J, Wolin E, Chasen B, et al. Health-Related Quality of Life in Patients With Progressive Midgut Neuroendocrine Tumors Treated With 177Lu-Dotatate in the Phase III NETTER-1 Trial. J Clin Oncol 2018;36:2578-2584.
51Estorch M, Carrió I, Berná L, et al. Indium-111-antimyosin scintigraphy after doxorubicin therapy in patients with advanced breast cancer. J Nucl Med 1990;31:1965-1969.
52Carrio I, Lopez-Pousa J, Duncker D. Comparison of cardiotoxicity bu in-111 antymioyosin studies:bolus administration versus continuos infusion of doxorubicin. Eur J Nucl Med 1993;20:833-834.
53Dörr U, Räth U, Sautter-Bihl ML, et al. Improved visualization of carcinoid liver metastases by indium-111 pentetreotide scintigraphy following treatment with cold somatostatin analogue. Eur J Nucl Med 1993;20:431-433.
54Ga 68 dotatoc [prescribing information]. Iowa City, IA: UIHC - PET Imaging Center; August 2019.
55Netspot (gallium Ga 68 dotatate) [prescribing information]. New York, NY: Advanced Accelerator Applications USA Inc; June 2016.
56Aalbersberg EA, de Wit-van der Veen BJ, Versleijen MWJ, et al. Influence of lanreotide on uptake of 68Ga-DOTATATE in patients with neuroendocrine tumours: a prospective intra-patient evaluation. Eur J Nucl Med Mol Imaging 2019;46:696-703.
57Ayati N, Lee ST, Zakavi R, et al. Long-Acting Somatostatin Analog Therapy Differentially Alters 68Ga-DOTATATE Uptake in Normal Tissues Compared with Primary Tumors and Metastatic Lesions. J Nucl Med 2018;59:223-227.
58Haug AR, Rominger A, Mustafa M, et al. Treatment with octreotide does not reduce tumor uptake of (68)Ga-DOTATATE as measured by PET/CT in patients with neuroendocrine tumors. J Nucl Med 2011;52:1679-1683.
59Lambert M, Dierickx L, Brillouet S, Courbon F, Chatelut E. Comparison of Two Types of Amino Acid Solutions on 177Lu-Dotatate Pharmacokinetics and Pharmacodynamics in Patients with Metastatic Gastroenteropancreatic Neuroendocrine Tumors. Curr Radiopharm 2022;15:164-172.
60Barbosa FG, Queiroz MA, Nunes RF, et al. Revisiting Prostate Cancer Recurrence with PSMA PET: Atlas of Typical and Atypical Patterns of Spread. Radiographics 2019;39:186-212.
61Mottet N, van den Bergh RCN, Briers E, et al. EAU Guidelines: Prostate Cancer, https://uroweb.org/guideline/prostate-cancer/ (2001).
62NCCN. Recently Updated Guidelines, https://www. nccn.org/guidelines/recently-published-guidelines (2022).
63van der Gaag S, Bartelink IH, Vis AN, Burchell GL, Oprea-Lager DE, Hendrikse H. Pharmacological Optimization of PSMA-Based Radioligand Therapy. Biomedicines 2022;10:3020.
64Locametz (gallium Ga 68 PSMA-11) [prescribing information]. Millburn, NJ: Advanced Accelerator Applications USA Inc; March 2022.
Article is only available in PDF format. Show PDF
2024 ©️ Galenos Publishing House