Experimental Animal Models for Lung Cancer
PDF
Cite
Share
Request
Review
P: 40-48
March 2019

Experimental Animal Models for Lung Cancer

Nucl Med Semin 2019;5(1):40-48
1. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi, Tıbbi Biyoloji Anabilim Dalı, Eskişehir, Türkiye
2. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi, Nükleer Tıp Anabilim Dalı, Eskişehir, Türkiye
No information available.
No information available
Publish Date: 03.04.2019
PDF
Cite
Share
Request

ABSTRACT

Lung cancer is the most lethal type of cancer after initial diagnosis. Clinically more suitable systems are needed for examination of both non-small cell lung cancer and small cell lung cancer biology and for characterizing new therapeutic strategies. For this purpose, animal models should mimic both genetic changes and histological features found in human lung tumors. Currently, various lung models are widely used for experimental lung cancer research. These include chemically induced lung tumors, transgenic mouse models, and human tumor xenografts. This study was prepared to review the reproducible, inexpensive, and feasible easy animal or orthotopic xenograft models of human lung cancer models. We will briefly describe the characteristic features of lung cancer xenograft models, transgenic animal models, syngeneic models, and chemically induced lung tumor formation model as well as their advantages and disadvantages.

References

1Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 2008;83:5874-594.
2Travis WD, Colby TV, Corrin B, Shimosato Y, Brambilla E. Histological typing of lung and Pleural Tumours. Berlin: Springer Verlag; 1999.
3Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013;63:11-30.
4Travis WD, Brambilla E, Noguchi M, et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society: international multidisciplinary classification of lung adenocarcinoma: executive summary. Proc Am Thorac Soc 2011;8:381-385.
5Vikis HG, Rymaszewski AL, Tichelaar JW. Mouse models of chemically-induced lung carcinogenesis. Front Biosci (Elite Ed) 2013;5:939-946.
6Howard RB, Chu H, Zeligman BE. Irradiated nude rat model for orthotopic human lung cancers. Cancer Res 1991;51:3274-3280.
7Hastings RH, Burton DW, Quintana RA, Biederman E, Gujral A, Deftos LJ. Parathyroid hormone-related protein regulates the growth of orthotopic human lung tumors in athymic mice. Cancer 2001;92:1402-1410.
8Kellar A, Egan C, Morris D. Preclinical murine models for lung cancer: clinical trial applications. Biomed Res Int 2015;2015:621324.
9Memon AA, Jakobsen S, Dagnaes-Hansen F, Sorensen BS, Keiding S, Nexo E. Positron emission tomography (PET) imaging with [11C]-labeled erlotinib: a micro-PET study on mice with lung tumor xenografs. Cancer Res 2009;69:873-878.
10Steiner P, Joynes C, Bassi R, et al. Tumor growth inhibition with cetuximab and chemotherapy in non-small cell lung cancer xenografs expressing wild-type and mutated epidermal growth factor receptor. Clin Cancer Res 2007;13:1540-1551.
11Sakuma Y, Matsukuma S, Nakamura Y, et al. Enhanced autophagy is required for survival in EGFR-independent EGFR-mutant lung adenocarcinoma cells. Lab Invest 2013;93:1137-1146.
12Akhtar S, Meeran SM, Katiyar N, Katiyar SK. Grape seed proanthocyanidins inhibit the growth of human nonsmall cell lung cancer xenografs by targeting insulin-like growth factor binding protein-3, tumor cell proliferation, and angiogenic factors. Clin Cancer Res 2009;15:821-831.
13Chen MF, Chen WC, Wu CT, et al. p53 status is a major determinant of effects of decreasing peroxiredoxin I expression on tumor growth and response of lung cancer cells to treatment. Int J Radiat Oncol Biol Phys 2006;66:1461-1472.
14Wang H, Li M, Rinehart JJ, Zhang R. Pretreatment with dexamethasone increases antitumor activity of carboplatin and gemcitabine in mice bearing human cancer xenografs: in vivo activity, pharmacokinetics, and clinical implications for cancer
chemotherapy. Clin Cancer Res 2004;10:1633-1644.
15McLemore TL, Liu MC, Blacker PC, et al. Novel intrapulmonary model for orthotopic propagation of human lung cancers in athymic nude mice. Cancer Res 1987;47:5132-5140.
16Carter CA, Chen C, Brink C, et al. Sorafenib is efcacious and tolerated in combination with cytotoxic or cytostatic agents in preclinical models of human non-small cell lung carcinoma. Cancer Chemother Pharmacol 2007;59:183-195.
17Feng Z, Zhao G, Yu L, Gough D, Howell SB. Preclinical efcacy studies of a novel nanoparticle-based formulation of paclitaxel that out-performs Abraxane. Cancer Chemother Pharmacol 2010;65:923-930.
18Yamori T, Sato S, Chikazawa H, Kadota T. Anti-tumor efcacy of paclitaxel against human lung cancer xenografs. Jpn J Cancer Res 1997;88:1205-1210.
19Qin M, Chen S, Yu T, Escuadro B, Sharma S, Batra RK. Coxsackievirus adenovirus receptor expression predicts the efciency of adenoviral gene transfer into non-small cell lung cancer xenografs. Clin Cancer Res 2003;9:4992-4999.
20Pettengill OS, Sorenson GD, Wurster-Hill DH, et al. Isolation and growth characteristics of continuous cell lines from small-cell carcinoma of the lung. Cancer 1980;45:906-918.
21Taylor JE, Bogden AE, Moreau JP, Coy DH. In vitro and in vivo inhibition of human small cell lung carcinoma (NCI-H69) growth by a somatostatin analogue. Biochem Biophys Res Commun 1988;153:81- 86.
22McLemore TL, Eggleston JC, Shoemaker RH, et al. Comparison of intrapulmonary, percutaneous intrathoracic, and subcutaneous models for the propagation of human pulmonary and nonpulmonary cancer cell lines in athymic nude mice. Cancer Res 1988;48:2880-2886.
23Fichtner I, Rolff J, Soong R, et al. Establishment of patientderived non-small cell lung cancer xenografs as models for the identifcation of predictive biomarkers. Clin Cancer Res 2008;14:6456-6468.
24Merk J, Rolff J, Becker M, Leschber G, Fichtner I. Patient-derived xenografs of non-small-cell lung cancer: a pre-clinical model to evaluate adjuvant chemotherapy? Eur J Cardiothorac Surg 2009;36:454-459.
25Dong X, Guan J, English JC, et al. Patient-derived first generation xenografs of non small cell lung cancers: promising tools for predicting drug responses for personalized chemotherapy. Clin Cancer Res 2010;16:1442-1451.
26Onn A, Isobe T, Itasaka S, et al. Development of an orthotopic model to study the biology and therapy of primary human lung cancer in nude mice. Clin Cancer Res 2003;9:5532-5539.
27Hodgkinson CL, Morrow CJ, Li Y, et al. Tumorigenicity and genetic profling of circulating tumor cells in smallcell lung cancer. Nat Med 2014;20:897-903.
28Krebs MG, Sloane R, Priest L, et al. Evaluation and prognostic signifcance of circulating tumor cells in patients with non-small-cell lung cancer. J Clin Oncol 2011;29:1556-1563.
29Hou JM, Krebs MG, Lancashire L, et al. Clinical signifcance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J Clin Oncol 2012;30:525-532.
30Sakai Y, Sasahira T, Ohmori H, Yoshida K, Kuniyasu H. Conjugated linoleic acid reduced metastasized LL2 tumors in mouse peritoneum. Virchows Arch 2006;449:341-347.
31Virmani AK, Gazdar AF. Tumor suppressor genes in lung cancer. Methods Mol Biol 2003;222:97-115.
32DeMayo FJ, Finegold MJ, Hansen TN, Stanley LA, Smith B, Bullock DW. Expression of SV40 T antigen under control of rabbit uteroglobin promoter in transgenic mice. Am J Physiol 1991;261:70-76.
33Wikenheiser KA, Clark JC, Linnoila RI, Stahlman MT, Whitsett JA. Simian virus 40 large T antigen directed by transcriptional elements of the human surfactant protein
C gene produces pulmonary adenocarcinomas in transgenic mice. Cancer Res 1992;52:5342-5352.
34Raben D, Bianco C, Damiano V, et al. Antitumor activity of ZD6126, a novel vascular-targeting agent, is enhanced when combined with ZD1839, an epidermal growth factor receptor
tyrosine kinase inhibitor, and potentiates the effects of radiation in a human non-small cell lung cancer xenograf model. Mol Cancer Ther 2004;3:977-983.
35Linnoila RI, Sahu A, Miki M, Ball DW, DeMayo FJ. Morphometric analysis of CC10-hASH1 transgenic mouse lung: a model for bronchiolization of alveoli and neuroendocrine carcinoma. Exp Lung Res 2000;26:595-615.
36Linnoila RI, Zhao B, DeMayo JL, et al. Constitutive achaete-scute homologue-1 promotes airway dysplasia and lung neuroendocrine tumors in transgenic mice. Cancer Res 2000;60:4005-4009.
37Mabry M, Nakagawa T, Baylin S, Pettengill O, Sorenson G, Nelkin B. Insertion of the v-Ha-ras oncogene induces differentiation of calcitonin-producing human small cell lung
cancer. J Clin Invest 1989;84:194-199.
38Sunday ME, Haley KJ, Sikorski K, et al. Calcitonin driven v-Ha-ras induces multilineage pulmonary epithelial hyperplasias and neoplasms. Oncogene 1999;18:4336-4347.
39Stanton VP Jr, Nichols DW, Laudano AP, Cooper GM. Defnition of the human raf amino-terminal regulatory region by deletion mutagenesis. Mol Cel Biol 1989;9:639-647.
40Heidecker G, Huleihel M, Cleveland JL, et al. Mutational activation of c-raf-1 and defnition of the minimal transforming sequence. Mol Cell Biol 1990;10:2503-2512.
41Rapp UR, Huleihel M, Pawson T, et al. Role of raf oncogenes in lung carcinogenesis. Lung Cancer 1988;4:162-167.
42Kerkhoff E, Fedorov LM, Siefken R, Walter AO, Papadopoulos T, Rapp UR. Lung-targeted expression of the c-Raf-1 kinase in transgenic mice exposes a novel oncogenic character of the wild-type protein. Cell Growth Differ 2000;11:185-190.
43Broers JL, Viallet J, Jensen SM, et al. Expression of c-myc in progenitor cells of the bronchopulmonary epithelium and in a large number of non-small cell lung cancers. Am J Respir Cell Mol Biol 1993;9:33-43.
44Lorenz J, Friedberg T, Paulus R, Oesch F, Ferlinz R. Oncogene overexpression in non-small-cell lung cancer tissue: prevalence and clinicopathological signifcance. Clin Investig 1994;72:156-163.
45Chen YQ, Zhou YQ, Fu LH, Wang D, Wang MH. Multiple pulmonary adenomas in the lung of transgenic mice overexpressing the RON receptor tyrosine kinase. Recepteur d’ origine nantais. Carcinogenesis 2002;23:1811-1819.
46Perl AK, Tichelaar JW, Whitsett JA. Conditional gene expression in the respiratory epithelium of the Mouse. Transgenic Res 2002;11:21-29.
47Politi K, Fan PD, Shen R, Zakowski M, Varmus H. Erlotinib resistance in mouse models of epidermal growth factor receptor-induced lung adenocarcinoma. Dis Model Mech 2010;3:111-119.
48Politi K, Zakowski MF, Fan PD, Schonfeld EA, Pao W, Varmus HE. Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev 2006;20:1496-1510.
49Fisher GH, Wellen SL, Klimstra D, et al. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev 2001;15:3249-3262.
50Tichelaar JW, Lu W, Whitsett JA. Conditional expression of fbroblast growth factor-7 in the developing and mature lung. J Biol Chem 2000;275:11858-11864.
51Politi K, Fan PD, Shen R, Zakowski M, Varmus H. Erlotinib resistance in mouse models of epidermal growth factor receptor-induced lung adenocarcinoma. Dis Model Mech 2010;3:111-119.
52Ji H, Ramsey MR, Hayes DN, et al. LKB1 modulates lung cancer differentiation and metastasis. Nature 2007;448:807-810.
53Shimkin MB, Stoner GD. Lung tumors in mice: application to carcinogenesis bioassay. Adv Cancer Res 1975;21:1-58.
54Hecht SS. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer 2003;3:733-744.
55Malkinson AM. The genetic basis of susceptibility to lung tumors in mice. Toxicology 1989;54: 241-271.
56Malkinson AM. Primary lung tumors in mice: an experimentally manipulable model of human adenocarcinoma. Cancer Res 1992;52(9 Suppl):2670-2676.
57Anttila S, Raunio H, Hakkola J. Cytochrome P450-mediated pulmonary metabolism of carcinogens: regulation and cross-talk in lung carcinogenesis. Am J Respir Cell Mol Biol 2011;44:583-590.
58Hecht SS. DNA adduct formation from tobacco-specific N-nitrosamines. Mutat Res 1999;424:127-142.
59Manenti G, Dragani TA. Pas1 haplotype-dependent genetic predisposition to lung tumorigenesis in rodents: a meta-analysis. Carcinogenesis 2005;26:875-882.
60Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 2002;21:7435-7451.
61Malkinson AM, Beer DS. Major effect on susceptibility to urethan-induced pulmonary adenoma by a single gene in BALB/cBy mice. J Natl Cancer Inst 1983;70:931-936.
62Wakamatsu N, Devereux TR, Hong HH, Sills RC. Overview of the molecular carcinogenesis of mouse lung tumor models of human lung cancer. Toxicol Pathol 2007;35:75-80.
63Demant P. Cancer susceptibility in the mouse: genetics, biology and implications for human cancer. Nat Rev Genet 2003;4:721-734.
64Liu P, Wang Y, Vikis H, et al. Candidate lung tumor susceptibility genes identified through whole-genome association analyses in inbred mice. Nature Genet 2006;38:888-895.
65Ohno J, Horio Y, Sekido Y, et al. Telomerase activation and p53 mutations in urethane-induced A/J mouse lung tumor development. Carcinogenesis 2001;22:751-756.
66Horio Y, Chen A, Rice P, Roth JA, Malkinson AM, Schrump DS. Ki-ras and p53 mutations are early and late events, respectively, in urethane-induced pulmonary carcinogenesis in A/J mice. Mol Carcinog 1996;17:217-223.
67Gunning WT, Kramer PM, Lubet RA, et al. Chemoprevention of benzo(a)pyrene induced lung tumors in mice by the farnesyltransferase inhibitor R115777. Clin Cancer Res 2003;9:1927-1930.
68Rehm S, Lijinsky W, Singh G, Katyal SL. Mouse bronchiolar cell carcinogenesis. Histologic characterization and expression of Clara cell antigen in lesions induced by N-nitrosobis-(2-chloroethyl) ureas. Am J Pathol 1991;139:413-422.
69Stoner GD, Greisiger EA, Schut HA, et al. A comparison of the lung adenoma response in strain A/J mice afer intraperitoneal and oral administration of carcinogens. Toxicol Appl Pharmacol 1984;72:313-323.
70Premsrirut PK, Dow LE, Kim SY, et al. A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell 2011;145:145-158.
71Memon AA, Jakobsen S, Dagnaes-Hansen F, Sorensen BS, Keiding S, Nexo E. Positron emission tomography (PET) imaging with [11C]-labeled erlotinib: a micro-PET study on
mice with lung tumor xenografs. Cancer Res 2009;69:873-879.
72Li D, Ambrogio L, Shimamura T, et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 2008;27:4702-4711.
73Perez-Soler R. The role of erlotinib (Tarceva, OSI 774) in the treatment of non-small cell lung cancer. Clin Cancer Res 2004;10:4238-4240.
74Eskens FA, Mom CH, Planting AS, et al. A phase I dose escalation study of BIBW 2992, an irreversible dual inhibitor of epidermal growth factor receptor 1 (EGFR) and 2
(HER2) tyrosine kinase in a 2-week on, 2-week off schedule in patients with advanced solid tumours. Br J Cancer 2008;98:80-85.
75Marty M, Fumoleau P, Adenis A, et al. Oral vinorelbine pharmacokinetics and absolute bioavailability study in patients with solid tumors. Ann Oncol 2001;12:1643-1649.
76Papageorgiou A, Stravoravdi P, Sahpazidou D, Natsis K, Chrysogelou E, Toliou T. Effect of Navelbine on inhibition of tumor growth, cellular differentiation and estrogen receptor
status on Lewis lung carcinoma. Chemotherapy 2000;46:188-194.
77Kohl NE, Omer CA, Conner MW, et al. Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nat Med 1995;1:792-797.
78Bos JL. Ras oncogenes in human cancer: a review. Cancer Res 1989;49:4682-4689.
79Lerner EC, Qian Y, Hamilton AD, Sebti SM. Disruption of oncogenic K-Ras4B processing and signaling by a potent geranylgeranyltransferase I inhibitör. J Biol Chem 1995;270:26770-26773.
80Megaraj V, Zhou X, Xie F, Liu Z, Yang W, Ding X. Role of CYP2A13 in the bioactivation and lung tumorigenicity of the tobacco-specifc lung procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone: in vivo studies using a CYP2A13-
humanized mouse model. Carcinogenesis 2014;35:131-137.
Article is only available in PDF format. Show PDF
2024 ©️ Galenos Publishing House