Experimental Models in Neurodegenerative Diseases
PDF
Cite
Share
Request
Review
P: 69-77
March 2019

Experimental Models in Neurodegenerative Diseases

Nucl Med Semin 2019;5(1):69-77
1. Trakya Üniversitesi Tıp Fakültesi, Nükleer Tıp Anabilim Dalı, Edirne, Türkiye
2. Medicana International İstanbul, Nükleer Tıp Kliniği, İstanbul, Türkiye
No information available.
No information available
Publish Date: 03.04.2019
PDF
Cite
Share
Request

ABSTRACT

Neurodegenerative diseases (NDDs) are a group of diseases characterized by progressive loss and structural deterioration of neuron functions. The rise in the average life expectancy has led to an increase in the number of patients with NDD and these diseases to become a social problem. The aim of this paper is to review the most common NDDs (Alzheimer’s disease, Parkinson disease, Huntington disease, and amyotrophic lateral sclerosis) and to examine the experimental models in order to investigate the pathogenesis, diagnosis, and treatment options of NDDs and to provide an overview of the reader.

References

1Shamim IA. Neurodegenerative Diseases. New York: Springer; 2012.
2Avila J, Lucas J, Hernandes F. Animal Models for Neurodegenerative Disease. Cambridge: The Royal Society of Chemistry; 2011.
3Arthur KC, Calvo A, Price TR, Geiger JT, Chiò A, Traynor BJ. Projected increase in amyotrophic lateral sclerosis from 2015 to 2040. Nat Commun 2016;7:12408.
4Prince, Martin, Comas-Herrera, Adelina, Knapp, Martin et al. World Alzheimer report 2016: improving healthcare for people living with dementia: coverage, quality and costs now and in the future. Alzheimer’s Disease International (ADI), London, UK.
5Hooijmans CR, Kiliaan AJ. Fatty acids, lipid metabolism and Alzheimer pathology. Eur J Pharmacol 2008;585:176-196.
6Scheltens P, Blennow K, Breteler MMB, de Strooper B, Frisoni GB, Salloway S et al. Alzheimer’s disease. Lancet 2016;388:505-517.
7Lambert MA, Bickel H, Prince M, et al. Estimating the burden of early onset dementia; systematic review of disease prevalence. Eur J Neurol 2014;21:563-569.
8Elçioğlu HK, Yılmaz G, İlhan B, Karan MA. Alzheimer Hastalığında Deneysel Hayvan Modelleri. Nobel Med 2018;14:5-13.
9Hardiman O, Doherty CP, Elamin M, Bede P. Neurodegenerative Disorders. Switzerland: Springer International Publishing; 2016.
10Sonkusare SK, Kaul CL, Ramarao P Dementia of Alzheimer’s disease and other neurodegenerative disorders-memantine, a new hope. Pharmacol Res 2005;51:1-17.
11Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 2007;8:101-112.
12Perl DP. Neuropathology of Alzheimer’s Disease. Mt Sinai J Med 2010;77:32-42.
13Viola KL, Klein WL. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 2015;129:183-206.
14Hynd MR, Scott HL, Dodd PR. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 2004;45:583-595.
15Pratico D. Oxidative stress hypothesis in Alzheimer’s disease: A reappraisal. Trends Pharmacol Sci 2008;29:609-615.
16Salminen A, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Inflammation in Alzheimer’s disease: Amyloid-β oligomers trigger innate immunity defence via pattern recognition receptors. Prog Neurobiol 2009;87:181-184.
17Schemmerta S, Schartmanna E, Honolda D, Zafiua C, Ziehma T, Langenb KJ et al. Deceleration of the neurodegenerative phenotype in pyroglutamate-Aβ accumulating transgenic mice by oral treatment with the Aβ oligomer eliminating compound RD2. Neurobiology of Disease 2019;124:36-45.
18Mattsson N, Insel PS, Landau S, et al. Diagnostic accuracy of CSF Ab42 and florbetapir PET for Alzheimer’s disease. Ann Clin Transl Neurol 2014;1:534-543.
19Palmqvist S, Zetterberg H, Blennow K, Vestberg S, Andreasson U, Brooks DJ, et al. Accuracy of brain amyloid detection in clinical practice using cerebrospinal fluid β-amyloid 42 a cross-validation study against amyloid positron emission tomography. JAMA Neurol 2014;71:1282-1289.
20Şahin Ş. Deneysel Alzheimer Hastalığı Modelleri. Turkiye Klinikleri Journal of Neurology Special Topics 2012;5:102-106.
21Tomruk C, Şirin C, Buhur A, et al. The four horsemen of neurodegenerative diseases Alzheimer, Parkinson, Huntington and amyotrophic lateral skleroz; clinical definition and experimental models. FNG & Bilim Tıp Dergisi 2018;4:37-43.
22Puzzo D, Gulisano W, Palmeri A, Arancio O. Rodent models for Alzheimer’s disease drug discovery. Expert Opin Drug Discov 2015;10:703-711.
23Carmo SD, Cuello CA. Modeling Alzheimer’s disease in transgenic rats, Molecular Neurodegeneration 2013;8:1-11.
24Dineley KT, Jahrling JB, Denner L. Insulin resistance ın Alzheimer’s disease, Neurobiol Dis 2014;72:92-103.
25Mc Larnon J. Correlated inflammatory responses and neurodegeneration in peptid-injected animal models of Alzheimer’s disease, Biomed Research International 2014;923670.
26Sadigh-Eteghad S, Sabermarouf B, Majdi A, et al. Amyloid-beta: acrucial factor in Alzheimer’s Disease. Med Princ Pract 2015;24:1-10.
27McGowan E, Eriksen J, Hutton M. A decade of modeling Alzheimer’s disease in transgenic mice. Trends Genet 2006;22:281-289.
28Zilka N, Filipcik P, Koson P, et al. Truncated Tau from sporadic Alzheimer’s disease suffices to drive neurofibrillary degeneration in vivo. FEBS Lett 2006;580:3582-3588.
29Stancu IC, Vasconcelos B, Terwel D, et al. Models of amiloid beta induced Tau pathology: the lonAg and folded road to understand the mechanism. Molecular Neurodegeneration 2014;9:51.
30Chesselet MF, Carmichael ST. Animal models of neurological disorders. Neurotherapeutics 2012;9:241-4.
31Bajo R, Pusil S, López ME, et al. Scopolamine effects on functional brain connectivity: a pharmacological model of Alzheimer’s disease. Sci Rep 2015;5:9748.
32Calvo-Ochoa E, Arias C. Cellular and metabolic alterations in the hipocampus caused by insülin signalling dysfunction and its association with cognitive impairment during aging and alzheimer’s disease: studies in animal models. Diabetes Metabolism Research and Reviews 2015;31:1-13.
33Dorsey ER, Constantinescu R, Thompson JP, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology Jan 2007;68:384-386.
34Victor S, Van Laar, Sarah B. Berman. Mitochondrial dynamics in Parkinson’s disease. Exp Neurol 2009;218:247-256.
35Çakmur R. Parkinson Hastalığının Epidemiyolojisi ve Klinik Özellikleri. Turkiye Klinikleri J Neur 2003;1:160-163.
36Wakabayashi K, Tanji K, Odagiri S, Miki Y, Mori F, Takahashi H. The Lewy body in Parkinson’s disease and related neurodegenerative disorders. Mol Neurobiol 2013;47:495-508.
37Gubellini P, Kachidian P. Animal models of Parkinson’s disease: An updated overview. Revue Neurologique 2015;171:750-761.
38Fujimoto T, Kuwahara T, Eguchi T, Sakurai M, Komori T, Iwatsubo T. Parkinson’s disease-associated mutant LRRK2 phosphorylates Rab7L1 and modifies trans-Golgi morphology. Biochemical and Biophysical Research Communications 2018;495:1708-1715.
39Mariucci G, Pagiotti R, Galli F, Romani L, Carmela Conte C. The potential role of toll-like receptor 4 in mediating dopaminergic cell loss and alpha-synuclein expression in the acute MPTP mouse model of Parkinson’s Disease. J Mol Neurosci 2018;64:611-618.
40Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the a-Synuclein Gene Identified in Families with Parkinson’s Disease. Science 1997;276:2045-2047.
41Blandini F, Armentero MT. Animal models of Parkinson’s disease. FEBS J 2012;279:1156-1166.
42Lindgren HS, Lelos MJ, Dunnett SB. Do a-synuclein vector injections provide a better model of Parkinson’s disease than the classic 6-hydroxydopamine model? Exp Neurol 2012;237:36-42.
43Sanchez-Betancourt J, Anaya-Martínez V, Gutierrez-Valdez AL, et al. Manganese mixture inhalation is a reliable Parkinson disease model in rats. Neurotoxicology 2012;33:1346-1355.
44Jackson-Lewis V, Blesa J, Przedborski S. Animal models of Parkinson’s disease. Parkinsonism Relat Disord 2012;18:183-185.
45Vuong K, Canning CG, Menan JC, Loy CT. Gait, balance, and falls in Huntington disease. Handb Clin Neurol 2016;159:251-260.
46Sugars KL and Rubinsztein DC. Transcriptional abnormalities in Huntington disease. TRENDS in Genetics 2003;19:233-238.
47Pouladi MA, Morton AJ, Hayden MR. Choosing an animal model for the study of Huntington’s disease. Nature Reviews. Neuroscience 2013;14:708-721.
48Mehrotra A, Sood A, Sandhir R. Mitochondrial modulators improve lipid composition and attenuate memory deficits in experimental model of Huntington’s disease. Molecular and Cellular Biochemistry 2015;410:281-292.
49Talbott EO, Malek AM, Lacomis D. The epidemiology of amyotrophic lateral sclerosis. Handb Clin Neurol 2016:138:225-238.
50Chia R, Chiò A, Traynor BJ. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol 2018;17:94-102.
51Martineau E, Di Polo A, Velde CV, Robitaille R. Dynamic neuromuscular remodeling precedes motor-unit loss in a Mouse model of ALS. eLife 2018;7:e41973.
52McCampbell A, Cole T, Wegener AJ, et al. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. J Clin Invest. 2018;128:3558-3567.
53Pennati A, Asress S, Glass JD, Galipeau J. Adoptive transfer of IL-10+ regulatory B cells decreases myeloid-derived macrophages in the central nervous system in a transgenic amyotrophic lateral sclerosis model. Cell Mol Immunol 2018;15:727-730.
54Albanese S, Greco A, Auletta L, Mancini M. Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component. Brain Imaging Behav 2018;12:1160-1196.
55Patterson AP, Booth SA, Saba R. The emerging use of in vivo optical imaging in the study of neurodegenerative diseases. BioMed Research International 2014;2014:401306.
56Wadghiri YZ, Li J, Wang J, et al. Detection of amyloid plaques targeted by bifunctional USPIO in Alzheimer’s Disease transgenic mice using magnetic resonance microimaging. PLoS ONE 2013;8:e57097.
57Poisnel G, Hérard AS, Tannir E, et al. Increased regional cerebral glucose uptake in an APP/PS1 model of Alzheimer’s disease. Neurobiol Aging 2012;33:1995-2005.
58Lin AJ, Liu G, Castello NA, et al. Optical imaging in an Alzheimer’s mouse model reveals amyloid-β-dependent vascular impairment. Neurophotonics 2014;1:011005.
59Alvarez-Fischer D, Blessmann G, Trosowski C, et al. Quantitative [(123)I]-FP-CIT pinhole SPECT imaging predicts striatal dopamine levels, but not number of nigral neurons in different mouse models of Parkinson’s disease. NeuroImage 2007;38:5-12.
60Shinotoh H, Shimada H, Kokubo Y, et al. Tau imaging detects distinctive distribution of tau pathology in ALS/PDC on the Kii Peninsula. Neurology 2019;92:1-12.
61Pépin J, Francelle L, Carrillo-de Sauvage MA, de Longprez L, Gipchtein P, Cambon K, et al. In vivo imaging of brain glutamate defects in a knock-in mouse model of Huntington’s disease. NeuroImage 2016;139:53-64.
62Yamasaki T, Fujinaga M, Yui J, et al. Noninvasive quantification of metabotropic glutamate receptor type 1 with [11C]ITDM: a small-animal PET study. J Cereb Blood Flow Metab 2014;34:606-612.
63Zang DW, Yang Q, Wang HX, Egan G, Lopes EC, Cheema SS. Magnetic resonance imaging reveals neuronal degeneration in the brainstem of the superoxide dismutase 1 transgenic mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 2004;20:1745-1751.
64Miyazaki K, Masamoto K, Morimoto N, et al. Early and progressive impairment of spinal blood flow-glucose metabolism coupling in motor neuron degeneration of ALS model mice. J Cereb Blood Flow Metab 2012;32:456-467.
65Brownell AL, Kuruppu D, Kil KE, et al. PET imaging studies show enhanced expression of mGluR5 and inflammatory response during progressive degeneration in ALS mouse model expressing SOD1-G93A gene. J Neuroinflammation 2015;12:217.
66Gargiulo S, Anzilotti S, Coda ARD, et al. Imaging of brain TSPO expression in a mouse model of amyotrophic lateral sclerosis with 18F-DPA-714 and micro-PET/CT. Eur J Nucl Med Mol Imaging 2016;43:1348-1359
Article is only available in PDF format. Show PDF
2024 ©️ Galenos Publishing House