Hypoxia Imaging Markers and Their Potential Roles in Radiotherapy
PDF
Cite
Share
Request
Review
P: 189-194
November 2023

Hypoxia Imaging Markers and Their Potential Roles in Radiotherapy

Nucl Med Semin 2023;9(3):189-194
1. Marmara Üniversitesi Pendik Eğitim ve Araştırma Hastanesi, Radyasyon Onkolojisi Kliniği, İstanbul, Türkiye
2. Marmara Üniversitesi Tıp Fakültesi, Radyasyon Onkolojisi Anabilim Dalı, İstanbul
No information available.
No information available
Publish Date: 28.12.2023
PDF
Cite
Share
Request

ABSTRACT

Hypoxia is a condition arising from an imbalance between oxygen production and consumption in cells, commonly observed in solid tumors. Hypoxic cells, indicative of increased angiogenesis, invasion, metastasis, metabolic changes, and genomic instability, also serve as markers for treatment resistance and poor prognosis. Pharmacological interventions aimed at overcoming tumor hypoxia during radiotherapy include prodrugs selectively activated in hypoxic cells or inhibitors targeting molecular factors crucial for hypoxic cell survival. Despite these efforts, such interventions have not gained sufficient traction in clinical settings for various reasons. However, identifying patients who would benefit most from strategies targeting hypoxia is critical. Modifying radiotherapy doses in hypoxic areas may significantly impact tumor control. In the era of modern radiotherapy techniques, imaging methods allowing visualization of hypoxic regions within tumors have the potential to modify radiotherapy planning and prescription. Knowledge regarding the use of hypoxia-specific radiopharmaceuticals in positron emission tomography for radiotherapy is expanding. This review aims to explore the role of hypoxia imaging markers in characterizing tumor hypoxia behavior during radiotherapy, with the goal of developing personalized treatments for both the tumor and the patient.

Keywords:
Hypoxia imaging markers, PET, radiotherapy, tumor hypoxia

References

1
Larionova I, Rakina M, Ivanyuk E, Trushchuk Y, Chernyshova A, Denisov E. Radiotherapy resistance: identifying universal biomarkers for various human cancers. J Cancer Res Clin Oncol 2022;148:1015-1031.
2
Overgaard J. Hypoxic radiosensitization: adored and ignored. J Clin Oncol 2007;25:4066-4074.
3
Overgaard J, Hansen HS, Overgaard M, Bastholt L, Berthelsen A, Specht L, Lindeløv B, Jørgensen K. A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85. Radiother Oncol 1998;46:135-146.
4
Song YP, Mistry H, Irlam J, Valentine H, Yang L, Lane B, West C, Choudhury A, Hoskin PJ. Long-Term Outcomes of Radical Radiation Therapy with Hypoxia Modification with Biomarker Discovery for Stratification: 10-Year Update of the BCON (Bladder Carbogen Nicotinamide) Phase 3 Randomized Trial (ISRCTN45938399). Int J Radiat Oncol Biol Phys 2021;110:1407-1415.
5
Stępień K, Ostrowski RP, Matyja E. Hyperbaric oxygen as an adjunctive therapy in treatment of malignancies, including brain tumours. Med Oncol 2016;33:101.
6
Li Y, Jiang Y, Qiu B, Sun H, Wang J. Current radiotherapy for recurrent head and neck cancer in the modern era: a state-of-the-art review. J Transl Med 2022;20:566.
7
Atwell D, Elks J, Cahill K, et al. A Review of Modern Radiation Therapy Dose Escalation in Locally Advanced Head and Neck Cancer. Clin Oncol (R Coll Radiol) 2020;32:330-341.
8
Krause M, Alsner J, Linge A, Bütof R, Löck S, Bristow R. Specific requirements for translation of biological research into clinical radiation oncology. Mol Oncol 2020;14:1569-1576.
9
Grimes DR, Warren DR, Warren S. Hypoxia imaging and radiotherapy: bridging the resolution gap. Br J Radiol 2017;90:20160939.
10
Harrison DK, Vaupel P. Heterogeneity in tissue oxygenation: from physiological variability in normal tissues to pathophysiological chaos in malignant tumours. Adv Exp Med Biol 2014;812:25-31.
11
Horsman MR, Overgaard J. The impact of hypoxia and its modification of the outcome of radiotherapy. J Radiat Res 2016;57(Suppl 1):i90-i98.
12
Gallez B. The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia. Front Pharmacol 2022;13:853568.
13
Vaupel P, Harrison L. Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 2004;9(Suppl 5):4-9.
14
Belozerov VE, Van Meir EG. Hypoxia inducible factor-1: a novel target for cancer therapy. Anticancer Drugs 2005;16:901-909.
15
Gray LH, Conger AD, Ebert M, Hornsey S, Scott OC. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 1953;26:638-648.
16
Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 1955;9:539-549.
17
Kumar A, Becker D, Adhikary A, Sevilla MD. Reaction of Electrons with DNA: Radiation Damage to Radiosensitization. Int J Mol Sci 2019;20:3998.
18
Joiner M, Avd Kogel. Basic Clinical Radiobiology. London: Hodder Arnold, 2009.
19
Hall EJ, Giaccia AJ. Radiobiology for the Radiologist. Philadelphia: Lippincott Williams & Wilkins, 2006.
20
Vaupel P. Tumor hypoxia: pathophysiology, clinical significance and therapeutic perspectives; with 19 tables. Stuttgart, Wissenschaftliche Verlagsgesellschaft; 1999.
21
Nordsmark M, Bentzen SM, Overgaard J. Measurement of human tumour oxygenation status by a polarographic needle electrode. An analysis of inter- and intratumour heterogeneity. Acta Oncol 1994;33:383-389.
22
Le QT, Courter D. Clinical biomarkers for hypoxia targeting. Cancer Metastasis Rev 2008;27:351-362.
23
Khoo A, Liu LY, Sadun TY, et al. Prostate cancer multiparametric magnetic resonance imaging visibility is a tumor-intrinsic phenomena. J Hematol Oncol 2022;15:48.
24
Kerkmeijer LGW, Groen VH, Pos FJ, et al. Focal Boost to the Intraprostatic Tumor in External Beam Radiotherapy for Patients With Localized Prostate Cancer: Results From the FLAME Randomized Phase III Trial. J Clin Oncol 2021;39:787-796.
25
Even AJ, van der Stoep J, Zegers CM, Reymen B, Troost EG, Lambin P, van Elmpt W. PET-based dose painting in non-small cell lung cancer: Comparing uniform dose escalation with boosting hypoxic and metabolically active sub-volumes. Radiother Oncol 2015;116:281-286.
26
Lopci E, Grassi I, Chiti A, et al. PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence. Am J Nucl Med Mol Imaging 2014;4:365-384.
27
Fleming IN, Manavaki R, Blower PJ, et al. Imaging tumour hypoxia with positron emission tomography. Br J Cancer 2015;112:238-250.
28
Halmos GB, Bruine de Bruin L, Langendijk JA, van der Laan BF, Pruim J, Steenbakkers RJ. Head and neck tumor hypoxia imaging by 18F-fluoroazomycin-arabinoside (18F-FAZA)-PET: a review. Clin Nucl Med 2014;39:44-48.
29
Mapelli P, Callea M, Fallanca F, et al. 18F-FAZA PET/CT in pretreatment assessment of hypoxic status in high-grade glioma: correlation with hypoxia immunohistochemical biomarkers. Nucl Med Commun 2021;42:763-771.
30
Rajendran JG, Schwartz DL, O'Sullivan J, et al. Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res 2006;12:5435-5441.
31
Lee ST, Scott AM. Hypoxia positron emission tomography imaging with 18f-fluoromisonidazole. Semin Nucl Med 2007;37:451-461.
32
Roels S, Slagmolen P, Nuyts J, et al. Biological image-guided radiotherapy in rectal cancer: is there a role for FMISO or FLT, next to FDG? Acta Oncol 2008;47:1237-1248.
33
Francolini G, Morelli I, Carnevale MG, et al. Integration between Novel Imaging Technologies and Modern Radiotherapy Techniques: How the Eye Drove the Chisel. Cancers (Basel) 2022;14:5277.
34
Horsman MR, Mortensen LS, Petersen JB, Busk M, Overgaard J. Imaging hypoxia to improve radiotherapy outcome. Nat Rev Clin Oncol 2012;9:674-687.
35
Bentzen SM, Gregoire V. Molecular imaging-based dose painting: a novel paradigm for radiation therapy prescription. Semin Radiat Oncol 2011;21:101-110.
36
Overgaard J. Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck--a systematic review and meta-analysis. Radiother Oncol 2011;100:22-32.
37
Bourhis J, Sire C, Graff P, et al. Concomitant chemoradiotherapy versus acceleration of radiotherapy with or without concomitant chemotherapy in locally advanced head and neck carcinoma (GORTEC 99-02): an open-label phase 3 randomised trial. Lancet Oncol 2012;13:145-153.
38
Mapelli P, Picchio M. 18F-FAZA PET imaging in tumor hypoxia: A focus on high-grade glioma. Int J Biol Markers 2020;35(Suppl 1):42-46.
39
Lee NY, Sherman EJ, Sch€oder H et al. The 30 ROC trial: Precision Intra-Treatment Imaging Guiding Major Radiation Reduction in Human Papillomavirus Related Oropharyngeal Cancer. Wolter Kluwer Health, 2021.
40
Boeke S, Thorwarth D, Mönnich D, et al. Geometric analysis of loco-regional recurrences in relation to pre-treatment hypoxia in patients with head and neck cancer. Acta Oncol 2017;56:1571-1576.
41
Flynn RT, Bowen SR, Bentzen SM, Rockwell Mackie T, Jeraj R. Intensity-modulated x-ray (IMXT) versus proton (IMPT) therapy for theragnostic hypoxia-based dose painting. Phys Med Biol 2008;53:4153-4167.
42
Malinen E, Søvik Å. Dose or 'LET' painting--What is optimal in particle therapy of hypoxic tumors? Acta Oncol 2015;54:1614-1622.
43
Bassler N, Jäkel O, Søndergaard CS, Petersen JB. Dose- and LET-painting with particle therapy. Acta Oncol 2010;49:1170-1176.
44
van Diessen J, De Ruysscher D, Sonke JJ, et al. The acute and late toxicity results of a randomized phase II dose-escalation trial in non-small cell lung cancer (PET-boost trial). Radiother Oncol 2019;131:166-173.
45
van Elmpt W, De Ruysscher D, van der Salm A, et al. The PET-boost randomised phase II dose-escalation trial in non-small cell lung cancer. Radiother Oncol 2012;104:67-71.
46
Thorwarth D, Alber M. Implementation of hypoxia imaging into treatment planning and delivery. Radiother Oncol 2010;97:172-175.
47
Vera P, Thureau S, Chaumet-Riffaud P, et al. Phase II Study of a Radiotherapy Total Dose Increase in Hypoxic Lesions Identified by 18F-Misonidazole PET/CT in Patients with Non-Small Cell Lung Carcinoma (RTEP5 Study). J Nucl Med 2017;58:1045-1053.
48
Welz S, Paulsen F, Pfannenberg C, et al. Dose escalation to hypoxic subvolumes in head and neck cancer: A randomized phase II study using dynamic [18F]FMISO PET/CT. Radiother Oncol 2022;171:30-36.
49
Choi W, Lee SW, Park SH, et al. Planning study for available dose of hypoxic tumor volume using fluorine-18-labeled fluoromisonidazole positron emission tomography for treatment of the head and neck cancer. Radiother Oncol 2010;97:176-182.
50
Hendrickson K, Phillips M, Smith W, Peterson L, Krohn K, Rajendran J. Hypoxia imaging with [F-18] FMISO-PET in head and neck cancer: potential for guiding intensity modulated radiation therapy in overcoming hypoxia-induced treatment resistance. Radiother Oncol 2011;101:369-375.
51
Elamir AM, Stanescu T, Shessel A, et al. Simulated dose painting of hypoxic sub-volumes in pancreatic cancer stereotactic body radiotherapy. Phys Med Biol 2021;66.
52
Chen AM. De-escalated radiation for human papillomavirus virus-related oropharyngeal cancer: evolving paradigms and future strategies. Front Oncol 2023;13:1175578.
53
Lee N, Schoder H, Beattie B, et al. Strategy of Using Intratreatment Hypoxia Imaging to Selectively and Safely Guide Radiation Dose De-escalation Concurrent With Chemotherapy for Locoregionally Advanced Human Papillomavirus-Related Oropharyngeal Carcinoma. Int J Radiat Oncol Biol Phys 2016;96:9-17.
54
Riaz N, Sherman E, Pei X, et al. Precision Radiotherapy: Reduction in Radiation for Oropharyngeal Cancer in the 30 ROC Trial. J Natl Cancer Inst 2021;113:742-751.
55
Rischin D, Hicks RJ, Fisher R, et al. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol 2006;24:2098-2104.
56
Krasnovskaya OO, Abramchuck D, Erofeev A, et al. Recent Advances in 64Cu/67Cu-Based Radiopharmaceuticals. Int J Mol Sci 2023;24:9154.
57
Brender JR, Saida Y, Devasahayam N, Krishna MC, Kishimoto S. Hypoxia Imaging As a Guide for Hypoxia-Modulated and Hypoxia-Activated Therapy. Antioxid Redox Signal 2022;36:144-159.
58
Lee CT, Boss MK, Dewhirst MW. Imaging tumor hypoxia to advance radiation oncology. Antioxid Redox Signal 2014;21:313-337.
59
Chvetsov AV, Zeng J, Rajendran JG. Volume dependence in hypoxia-targeted dose escalation. Med Phys 2018;45:5325-5331.
60
Dolezel M, Slavik M, Blazek T, et al. FMISO-Based Adaptive Radiotherapy in Head and Neck Cancer. J Pers Med 2022;12:1245.