Imaging Modalities Used in Preclinical Studies
PDF
Cite
Share
Request
Review
VOLUME: 5 ISSUE: 1
P: 23 - 29
March 2019

Imaging Modalities Used in Preclinical Studies

Nucl Med Semin 2019;5(1):23-29
No information available.
No information available
Publish Date: 03.04.2019
PDF
Cite
Share
Request

ABSTRACT

Imaging modalities have long been indispensable tool in clinical and preclinical practice or drug development. Increasingly, in vivo imaging of small laboratory animals has gained importance as a critical component of preclinical biomedical research as well. The most used modalities for small-animal in vivo imaging applications are based on nuclear medicine techniques (especially, positron emission tomography [PET] and single photon emission computed tomography [SPECT]), computed tomography (CT), and magnetic resonance imaging (MRI). Each modality has intrinsic strengths and limitations, and the choice of the imaging modality depends on the parameter of interest. Recently, aiming to overcome the limitations of each imaging modality, multimodality devices designed to provide complementary information upon the pathophysiological process under study have emerged popularity. The combination of high-resolution modalities, like microCT or microMRI, with highly sensitive techniques providing functional information, such as microPET or microSPECT, will continue to broaden the horizons of research in such areas as infection, oncology, cardiology, and neurology, contributing not only to the understanding of the underlying mechanisms of disease but also providing efficient and unique tools for evaluating new chemical entities and development of candidate drugs.

Keywords:
Preclinical, imaging modalities, in vivo

References

1
Rowland DJ, Cherry SR. Small-animal preclinical nuclear medicine instrumentation and methodology. Semin Nucl Med 2008;38:209-222.
2
Lauber DT, Fülöp A, Kovács T, et al. State of the art in vivo imaging techniques for laboratory animals. Lab Anim 2017;51:465-478.
3
Fabian Kiessling, Bernd J. Pichler. Imaging Modalities and Probes. In: Small Animal Imaging. New York: Springer; 2011:119-293.
4
Franc BL, Acton PD, Mari C, et al. Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. J Nucl Med 2008;49:1651-1663.
5
Sánchez F, Orero A, Soriano A, et al. ALBIRA: A small animal PET/SPECT/CT imaging system. Med Phys 2013;40:051906.
6
Goetz C, Breton E, Choquet P, et al. SPECT low-field MRI system for small-animal imaging. J Nucl Med 2008;49:88-93.
7
Imam SK. Molecular nuclear imaging: the radiopharmaceuticals (review). Cancer Biother Radiopharm 2005;20:163-172.
8
Ritman EL. Current status of developments and applications of micro-CT. Annu Rev Biomed Eng. 2011;13:531-52.
9
Carlson SK. Small animal absorbed radiation dose from serial micro-computed tomography imaging. Mol Imaging Biol 2007;9:78-82.
10
Esquinas PL, Rodríguez-Rodríguez C, Esposito TVF, et al. Dual SPECT imaging of 111In and 67Ga to simultaneously determine in vivo the pharmacokinetics of different radiopharmaceuticals: a quantitative tool in pre-clinical research. Phys Med Biol 2018;63:235029.
11
Peterson TE, Furenlid LR.SPECT detectors: the Anger Camera and beyond. Phys Med Biol 2011;56:145-182.
12
Golestani R, Wu C, Tio RA, et al. Small-animal SPECT and SPECT/CT: application in cardiovascular research. Eur J Nucl Med Mol Imaging 2010;37:1766-1777.
13
Cunha L, Horvath I, Ferreira S, et al. Preclinical Imaging: an Essential Ally in Modern Biosciences Lı´dia Cunha. Mol Diagn Ther 2014;18:153-173.
14
Difilippo FP. Design and performance of a multi-pinhole collimation device for small animal imaging with clinical SPECT and SPECT-CT scanners. Phys Med Biol 2008;53:4185-4201.
15
van der Have F, Vastenhouw B, Ramakers RM, et all. U-SPECT-II: An Ultra-High-Resolution Device for Molecular Small-Animal Imaging. J Nucl Med. 2009;50:599-605.
16
Kim H, Furenlid LR, Crawford M, et al. SemiSPECT: a small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays. Med Phys 2006;33:465-474.
17
S. Sajedi, N. Zeraatkar, V. Moji, et al. Design and development of a high resolution animal SPECT scanner dedicated for rat and mouse imaging Nucl Instrum Methods Phys Res A 2014;741;169-176.
18
Khalil MM, Tremoleda JL, Bayomy TB, et al. Molecular SPECT Imaging: An Overview. Int J Mol Imaging 2011:796025.
19
Fahey FH. PET instrumentation. Radiol Clin North Am 2001;39:919-929.
20
Cutler PD, Cherry SR, Hoffman EJ, et al. Design features and performance of a PET system for animal research. J Nucl Med 1992;33:595-604.
21
Schnockel U, Hermann S, Stegger L, et al. Small-animal PET: a promising, noninvasive tool in pre-clinical research. Eur J Pharm Biopharm 2010;74:50-54.
22
Tai YC, Laforest R. Instrumentation aspects of animal PET. Annu Rev Biomed Eng 2005;7:255-285
23
Yao R, Lecomte R, Crawford ES. Small-animal PET: what is it, and why do we need it? J Nucl Med Technol 2012;40:157-165.
24
Herschman HR1Micro-PET imaging and small animal models of disease. Curr Opin Immunol. 2003;15:378-384.
25
Vaska P1, Rubins DJ, Alexoff DL, et al. Quantitative imaging with the micro-PET small-animal PET tomograph. Int Rev Neurobiol 2006;73:191-218.
26
Myers R, Hume S. Small animal PET. Eur Neuropsychopharmacol 2002;12:545-555.
27
Delbeke D. Oncological applications of FDG PET imaging: Brain tumors, colorectal cancer, lymphoma, and melanoma. J Nucl Med 1999;40:591-603.
28
Vaska P, Rubins DJ, Alexoff DL, et al. Quantitative imaging with the micro-PET small-animal PET tomograph. Int Rev Neurobiol 2006;73:191-218.
29
Schoder H, Erdi YE, Chao K, et al. Clinical implications of different image reconstruction parameters of interpretation of whole-body PET studies in cancer patients. J Nucl Med. 2004;45:559-566.
30
Shalom RB, Valdivia AY, Blaufox MD. PET imaging in oncology. Sem Nucl Med 2000;30:150-185.
31
Clark DP1, Badea CT. Micro-CT of rodents: state-of-the-art and future perspectives. Phys Med 2014;30:619-634.
32
Hedgire SS, Baliyan V, Ghoshhajra BB, et al. Recent advances in cardiac computed tomography dose reduction strategies: a review of scientific evidence and technical developments. J Med Imaging 2017;4:031211.
33
Paulus MJ, Gleason SS, Kennel SJ, et al. High resolution X-ray computed tomography: an emerging tool for small animal cancer research. Neoplasia 2000;2:62-70.
34
Boerckel JD, Mason DE, McDermott AM, et al. Microcomputed tomography: approaches and applications in bioengineering. Stem Cell Res Ther 2014;5:144-149.
35
Geyer LL, Schoepf UJ, Meinel FG et al. State of the art: iterative CT reconstruction techniques. Radiology 2015;27:339-357.
36
Ritschl L1, Sawall S, Knaup M, et al. Iterative 4D cardiac micro-CT image reconstruction using an adaptive spatio-temporal sparsity prior. Phys Med Biol 2012;57:1517-1525.
37
Ren L1, Ghani MU, Wu D The impact of spectral filtration on image quality in micro-CT system. J Appl Clin Med Phys 2016;17:301-315.
38
Louisa Bokacheva, Ellen Ackerstaff, H. Carl LeKaye, et al. High field small animal magnetic resonance oncology studies. Phys Med Biol 2014;59:65-127.
39
Hutton BF, Occhipinti M, Kuehne A, et al. Development of clinical simultaneous SPECT/MRI. Br J Radiol 2016;20160690.
40
Stortz G, Thiessen JD, Bishop D. Performance of a PET insert for high-resolution small-animal PET/MRI at 7 Tesla. J Nucl Med 2018;59:536-542.
41
Tartis MS, Kruse DE, Zheng H, Zhang H, Kheirolomoom A, Marik J, et al. Dynamic microPET imaging of ultrasound contrast agents and lipid delivery. J Controlled Release 2008;131:160-166.