Imaging Probes Used in Multiple Imaging System (Dual Modality Probes)
PDF
Cite
Share
Request
Review
P: 15-22
March 2019

Imaging Probes Used in Multiple Imaging System (Dual Modality Probes)

Nucl Med Semin 2019;5(1):15-22
1. Ege Üniversitesi Nükleer Bilimler Ensitüsü, İzmir, Türkiye
No information available.
No information available
Publish Date: 03.04.2019
PDF
Cite
Share
Request

ABSTRACT

Nowadays, with the increasing interest in personalized medicine and translational research, the need to develop disease-specific nanoprobes has arisen, leading to the development of systems that simultaneously perform multiple imaging such as positron emission tomography (PET)/computerized tomography (CT), single photon emission computerized tomography (SPECT)/CT or SPECT/magnetic resonance imaging (MRI), and PET/MRI in the biomedical field. These systems revealed the need to develop new molecular systems or nanotechnological drugs capable of performing multiple functions that could give the same image. Thus, the emergence of hybrid cameras combining the MRI with SPECT or PET in the multi-module hybrid technology has aroused increased attention to the development of multimodality imaging probes. As a result, the need to develop diseasespecific nanoprobes has arisen with the increasing interest in personalized medicine and translational research, and focus to radionuclides labeled nanoparticles of PET/SPECT has increased in the biomedical field. The biggest challenges are: the development of easy-to-use, high-throughput radiolabeling strategies to improve the imaging stability, increased sensitivity for early stage sensitivity for the disease, and the optimization of in vivo pharmacokinetics. The aim of this article is to briefly summarize the main applications of imaging probes that can be used in the multiple mode (dualmode) system for different systems such as cardiovascular imaging, lung diagnosis, and tumor therapy.

References

1Liu Y, Welch MJ. Nanoparticles labeled with positron emitting nuclides: advantages, methods, and applications. Bioconjug Chem 2012;23:671-682.
2Hagooly A, Rossin R, Welch MJ. Small molecule receptors as imaging targets. Handb Exp Pharmacol 2008:93-129.
3Gunasekera UA, Pankhurst QA, Douek M. Imaging applications of nanotechnology in cancer. Target Oncol 2009;4:169-181.
4Moharrami P, Unak P, Guldu OK, et al. Multifunctional molecular imaging probes for estrogen receptors: 99mTc labeled diethylstilbestrol (DES) conjugated, cuinp quantum dot nanoparticles (DESCIP). J Radioanal Nucl Chem 2017;314:2609-2620.
5Akça Ö, Ünak P, Medine Eİ, et al. Radioiodine Labelled CdSe/CdS Quantum Dots: Lectin targeted dual probes. Radiochim Acta 2014;102:849-859.
6Yüksel M, Çolak D, Akın M, et al. Nonionic, water self-dispersible “hairy-rod” poly(p-phenylene)-g-poly(ethylene glycol) copolymer/carbon nanotube conjugates for targeted cell imaging. Biomacromolecules 2012;13:2680-2691.
7Sanvicens N, Marco MP. Multifunctional nanoparticles--properties and prospects for their use in human medicine. Trends Biotechnol 2008;26:425-433.
8Unak G, Timur S, Toksoz F, Medine EI, et al. Gold nanoparticle probes: Design and in vitro applications in cancer cell culture. Colloids Surf B Biointerfaces 2012;90:217-226.
9Subramanian M, Pearce G, Guldu O K, et al. A pilot study into the use of FDG-mNP as an alternative approach in neuroblastoma cell hyperthermia. IEEE Trans Nanobioscience 2016;15:517-525.
10Aras O, Pearce G, Watkins AJ, et al. An in-vivo pilot study into the effects of FDG-mNP in cancer in mice. Plos One 2018;13:0202482.
11Watkins AJ, Pearce G, Unak P, et al. Tissue morphology and gene expression characterisation of transplantable adenocarcinoma bearing mice exposed to fluorodeoxyglucose-conjugated magnetic nanoparticles. J Biomed Nanotechnol 2018;14:1979-1991. 
12Barlas BF, Demir B, Guler E, et al. Multimodal theranostic assemblies: double encapsulation of protoporphyrine-IX/Gd3+ in niosomes. RSC Advances 2016;6:30217-30225.
13Ozada C, Tekin V, Barlas FB, Timur S, Unak P. Encapsulation Of Protoporphyrin-Ix/Manganese Oxide In Niosomes As Theranostic, 4th Edition. International Symposium on Composite Materials. İzmir: KOMPEGE;2018. p. 360-368.
14 Ucar E, Teksoz S, Ichedef C, et al. Synthesis, characterization and radiolabeling of folic acid modified nanostructured lipid carriers as a contrast agent and drug delivery system. Appl Radiat Isotop 2017;9:72-79.
15Colak DG, Cianga I, Odaci Demirkol D, et al. The synthesis and targeting of PPP-type copolymers to breast cancer cells: multifunctional platforms for imaging and diagnosis. J Mater Chem 2012;22:9293-9300.
16Guldu OK, Unak P, Timur S. A novel theranostic nanobioconjugate: 125/131I labeled phenylalanine conjugated boron nitride nanotubes. J Radioanal Nucl Chem 2017;311:1751-1762.
17 Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 2011;40:1647-1671.
18 Li SD, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 2008;5:496-504.
19 Cormode DP, Skajaa T, Fayad ZA, Mulder WJ. Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol 2009;29:992-1000.
20Xie H, Wang ZJ, Bao A, Goins B, Phillips WT. In vivo PET imaging and biodistribution of radiolabeled gold nanoshells in rats with tumor xenografts. Int J Pharm 2010;395:324-330.
21Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond) 2011;6:715-728.
22Kuo WS, Chang YT, Cho KC, Chiu KC, Lien CH, Yeh CS, Chen SJ. Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials 2012;33:3270-3278.
23 Zhang JS, Liu F, Huang L. Implications of pharmacokinetic behavior of lipoplex for its inflammatory toxicity. Adv Drug Delivery Rev 2005;57:689-698.
24 Jarzyna PA, Gianella A, Skajaa T, et al. Multifunctional imaging nanoprobes. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010;2:138-150.
25Welch MJ, Hawker CJ, Wooley KL. The advantages of nanoparticles for PET. J Nucl Med 2009;50:1743-1746.
26Minchin RF, Martin DJ. Nanoparticles for molecular imaging--an overview. Endocrinology 2010;151: 474-481.
27 Loudos G, Kagadis GC, Psimadas D. Current status and future perspectives of in vivo small animal imaging using radiolabeled nanoparticles. Eur J Radiol 2010;78:287-295.
28 Hong H, Zhang Y, Sun J, Cai W. Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today 2009;4:399-413.
29 Gomes CM, Abrunhosa AJ, Ramos P, Pauwels EK. Molecular imaging with SPECT as a tool for drug development. Adv Drug Deliv Rev 2011;63:547-554.
30 Heidel JD, Davis ME. Clinical developments in nanotechnology for cancer therapy. Pharm Res 2011;28:187-199.
31Schluep T, Hwang J, Hildebrandt IJ, et al. Pharmacokinetics and tumor dynamics of the nanoparticle IT-101 from PET imaging and tumor histological measurements. Proc Natl Acad Sci USA 2009;106:11394-11399.
32Benezra M, Penate-Medina O, Zanzonico PB, et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest 2011;121:2768-2780.
33Ray P. The pivotal role of multimodality reporter sensors in drug discovery: from cell based assays to real time molecular imaging. Curr Pharm Biotechnol 2011;12:539-546.
34Glaus C, Rossin R, Welch MJ, Bao G. In vivo evaluation of (64)Cu-labeled magnetic nanoparticles as a dual modality PET/MR imaging agent. Bioconjug Chem 2010;21:715-722.
35Almutairi A, Rossin R, Shokeen M, et al. Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci U S A 2009;106:685-690.
36Rossin R, Muro S, Welch MJ, Muzykantov VR, Schuster DP. In vivo imaging of 64Cu-labeled polymer nanoparticles targeted to the lung endothelium. J Nucl Med 2008;49:103-111.
37Liu Y, Ibricevic A, Cohen JA, et al. Impact of hydrogel nanoparticle size and functionalization on in vivobehavior for lung imaging and therapeutics. Mol Pharm 2009;6:1891-1902.
38Tang L. Radionuclide production and yields at Washington University School of Medicine. Q J Nucl Med Mol Imaging 2008;52:121-133.
39Hamoudeh M, Kamleh MA, Diab R, Fessi H. Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Deliv Rev 2008;60:1329-1346.
40Shokeen M, Fettig NM, Rossin R. Synthesis, in vitro and in vivo evaluation of radiolabeled nanoparticles. Q J Nucl Med Mol Imaging 2008;52:267-277.
41Kagadis GC, Loudos G, Katsanos K, Langer SG, Nikiforidis GC. In vivo small animal imaging: current status and future prospects. Med Phys 2010;37:6421-6442.
42Anderson CJ, Ferdani R. Copper-64 radiopharmaceuticals for PET imaging of cancer: advances in preclinical and clinical research. Cancer Biother Radiopharm 2009;24:379-393.
43Gregoriadis G, Ryman BE. Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases. Biochem J 1971;124:58.
44Bimbo LM, Sarparanta M, Santos HA, et al. Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano 2010;4:3023-3032.
45Kumar R, Roy I, Ohulchanskky TY, et al. In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 2010;4:699-708.
46Martin R, Menchon C, Apostolova N, et al. Nano-jewels in biology. Gold and platinum on diamond nanoparticles as antioxidant systems against cellular oxidative stress. ACS Nano 2010;4:6957-6965.
47Rojas S, Gispert JD, Martin R, et al. Biodistribution of amino-functionalized diamond nanoparticles. In vivo studies based on 18F radionuclide emission. ACS Nano 2011;5:5552-5559.
48Buxton DB. Nanotechnology research support at the national heart, lung, and blood institute. Circ Res 2011;109:250-254.
49Özkaya F, Unak P, Medine EI, Sakarya S, Unak G, Timur S. 18FDG Conjugated Magnetic Nanoparticle Probes: Synthesis and In Vitro Investigation on MCF7 Breast Cancer Cells. J Radioanal Nucl Chem 2013;295: 1789-1796.
50Yılmaz T, Unak P, Muftuler FZB, Medine EI, Ichedef C, Kılcar AY. Magnetic Nanoparticle-Conjugated and Radioiodinated-DESG: In vitro and in vivo efficiency investigation. J Radioanal Nucl Chem 2015;303:63-69.
51Bekis R, Medine I, Dagdeviren K, Ertay T, Unak P. A new agent for sentinel lymph node detection: Preliminary Results. J Radioanal Nucl Chem 2011;290:277-282.
52Choi JS, Park JC, Nah H, et al. A hybrid nanoparticle probe for dual-modality positron emission tomography and magnetic resonance imaging. Angew Chem Int Ed Engl 2008;47:6259-6262.
53Stelter L, Pinkernelle JG, Michel R, et al. Modification of aminosilanized superparamagnetic nanoparticles: feasibility of multimodal detection using 3T MRI, small animal PET, and fluorescence imaging. Mol Imaging Biol 2010;12:25-34.
54Chen J, Glaus C, Laforest R, et al. Gold nanocages as photothermal transducers for cancer treatment. Small 2010;6:811-817.
55Ruggiero A, Villa CH, Holland JP, et al. Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. Int J Nanomedicine 2010;5:783-802.
56Marik J, Tartis MS, Zhang H, et al. Long-circulating liposomes radiolabeled with [18F]fluorodipalmitin ([18F]FDP). Nucl Med Biol 2007;34:165-171.
57Oku N, Yamashita M, Katayama Y, et al. PET imaging of brain cancer with positron emitter-labeled liposomes. Int J Pharm 2011;403:170-177.
58Andreozzi E, Seo JW, Ferrara K, Louie A. Novel method to label solid lipid nanoparticles with (64)Cu for positron emission tomography imaging. Bioconjugate Chem 2011;22:808-818.
59Fukukawa K, Rossin R, Hagooly A, et al. Synthesis and characterization of core-shell star copolymers for in vivo PET imaging applications. Biomacromolecules 2008;9:1329-1339.
60Courant T, Roullin VG, Cadiou C, et al. Development and physicochemical characterization of copper complexes-loaded PLGA nanoparticles. Int J Pharm 2009;379:226-234.
Article is only available in PDF format. Show PDF
2024 ©️ Galenos Publishing House