Models of Cardiovascular Disease
PDF
Cite
Share
Request
Review
P: 96-101
March 2019

Models of Cardiovascular Disease

Nucl Med Semin 2019;5(1):96-101
1. Başkent Üniversitesi Adana Dr. Turgut Noyan Uygulama ve Araştırma Merkezi, Nükleer Tıp Kliniği, Adana, Türkiye
2. Trakya Üniversitesi, Tıp Fakültesi, Nükleer Tıp Anabilim Dalı, Edirne, Türkiye
No information available.
No information available
Publish Date: 03.04.2019
PDF
Cite
Share
Request

ABSTRACT

Cardiovascular diseases are the leading causes of mortality and morbidity worldwide and account for the substantial proportion of global health burden. Since early diagnosis and treatment are important in disease course, numerous preclinical studies are being conducted to develop diagnostic and therapeutic alternatives. In preclinical studies, small or large animal models of cardiovascular diseases are created using surgical methods or toxic agents to the cardiovascular system. Imaging is essential in these models. Imaging of animal models provides a non-invasive way of evaluating the biological structure in vivo with scintigraphic methods and positron emission tomography being used often.

References

1Jones DP, Patel J. Therapeutic approaches targeting inflammation in cardiovascular disorders. Biology (Basel) 2018;7.
2Imaging in Cardiovascular Resarch. In: Kiessling F, Pichler BJ, Hauff P, editors. Small animal imaging. First edition. heidelberg: springer ;2011.p.449-471.
3Akbay E, Onur MA, Gürpınar ÖA. Miyokard infarktüs modelleri. Turkiye Klinikleri J Cardiovasc Surg-Special Topics 2013;5:49-57.
4Minareci-Karasu E, Öğütman Ç. Kardiyovasküler sistem hastalıklarında kullanılan deneysel hayvan modelleri. Turkiye Klinikleri J Cardiovasc Sci 2011;23:65-74.
5Shim J, Al-Mashhadi RH, Sorensen CB, Bentzon JF. Large animal models of atherosclerosis--new tools for persistent problems in cardiovascular medicine. J Pathol 2016;238:257-266.
6Haghighi K, Kolokathis F, Pater L, et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest 2003;111:869-876.
7Ginis I, Luo Y, Miura T, et al. Differences between human and mouse embryonic stem cells. Dev Biol 2004;269:360-380.
8Doğancı S. Kalp cerrahisinde iskemi-reperfüzyon modelleri. Turkiye Klinikleri J Cardiovasc Surg-Special Topics 2013;5:72-76.
9Gökmen SS, Kılıçlı G, Özçelik F, Gülen S. Serum total and lipid-bound sialic acid levels following acute myocardial infarction. Clin Chem Lab Med 2000;38:1249-1255.
10Özgün E, Özgün GS, Usta U, Eskiocak S, Gökmen SS. Melatoninin deneysel miyokard infarktüsünde serum paraoksonaz ve laktonaza etkisi. Türk Klinik Biyokimya Derg 2018;16:32-41.
11Benjamin IJ, Jalil JE, Tan LB, et all. Isoproterenol-induced myocardial fibrosis in relation to myocyte necrosis. Circ Res 1989;65:657-670.
12Tipnis UR, He GY, Li S, Campbell G, Boor PJ. Attenuation of isoproterenol-mediated myocardial injury in rat by an inhibitor of polyamine synthesis. Cardiovasc Pathol 2000;9:273-280.
13Gürbüz HA, Kalp yetmezliği modelleri. Turkiye Klinikleri J Cardiovasc Surg-Special Topics 2013;5.
14Shinbane JS, Wood MA, Jensen DN, et al. Tachycardia-induced cardiomyopathy: a review of animal models and clinical studies. J Am Coll Cardiol 1997;29:709-715.
15Morgan DE, Tomlinson CW, Qayumi AK, et al. Evaluation of ventricular contractility indexes in the dog with left ventricular dysfunction induced by rapid atrial pacing. J Am Coll Cardiol 1989;14:489-495; discussion 496-498.
16Tsutsui H, Spinale FG, Nagatsu M, et al. Effects of chronic beta-adrenergic blockade on the left ventricular and cardiocyte abnormalities of chronic canine mitral regurgitation. J Clin Invest 1994;93:2639-2648.
17Houser SR, Margulies KB, Murphy, AM et al; American Heart Association Council on Basic Cardiovascular Sciences, Council on Clinical Cardiology, and Council on Functional Genomics and Translational Biology. Animal models of heart failure: a scientific statement from the American Heart Association. Circ Res 2012;111:131-150.
18Bing OH, Brooks WW, Robinson KG, et al. The spontaneously hypertensive rat as a model of the transition from compensated left ventricular hypertrophy to failure. J Mol Cell Cardiol 1995;27:383-396.
19Tuna AT, Hipertansiyon modelleri. Turkiye Klinikleri J Cardiovasc Surg-Special Topics 2013;5:45-48.
20Tsui BM, Kraitchman DL. Recent advances in small-animal cardiovascular imaging. J Nucl Med 2009;50:667-670.
21Constantinesco A, Choquet P, Monassier L, Israel-Jost V, Mertz L. Assessment of left ventricular perfusion, volumes, and motion in mice using pinhole gated SPECT. J Nucl Med 2005;46:1005-1011.
22Hirai T, Nohara R, Hosokawa R, et al. Evaluation of myocardial infarct size in rat heart by pinhole SPECT. J Nucl Cardiol 2000;7:107-111.
23Acton PD, Thomas D, Zhou R. Quantitative imaging of myocardial infarct in rats with high resolution pinhole SPECT. Int J Cardiovasc Imaging 2006;22:429-434.
24Stegger L, Hoffmeier AN, Schäfers KP, et al. Accurate noninvasive measurement of infarct size in mice with high-resolution PET. J Nucl Med 2006;47:1837-1844.
25Inubushi M, Jordan MC, Roos KP, et al. Nitrogen-13 ammonia cardiac positron emission tomography in mice: effects of clonidine-induced changes in cardiac work on myocardial perfusion. Eur J Nucl Med Mol Imaging 2004;31:110-116.
26Croteau E, Bénard F, Bentourkia M, et al. Quantitative myocardial perfusion and coronary reserve in rats with 13N-ammonia and small animal PET: impact of anesthesia and pharmacologic stress agents. J Nucl Med 2004;45:1924-1930.
27Higuchi T, Nekolla SG, Jankaukas A, et al. Characterization of normal and infarcted rat myocardium using a combination of small-animal PET and clinical MRI. J Nucl Med 2007;48:288-294.
28Shoghi KI, Gropler RJ, Sharp T, et al. Time course of alterations in myocardial glucose utilization in the Zucker diabetic fatty rat with correlation to gene expression of glucose transporters: a small-animal PET investigation. J Nucl Med 2008;49:1320-1327.
29Herrero P, Kim J, Sharp TL, et al. Assessment of myocardial blood flow using 15O-water and 1-11C-acetate in rats with small-animal PET. J Nucl Med 2006;47:477-485.
30Welch MJ, Lewis JS, Kim J, et al. Assessment of myocardial metabolism in diabetic rats using small-animal PET: a feasibility study. J Nucl Med 2006;47:689-697.
31Higuchi T, Taki J, Nakajima K, et al. Time course of discordant BMIPP and thallium uptake after ischemia and reperfusion in a rat model. J Nucl Med 2005;46:172-175.
32Tipre DN, Fox JJ, Holt DP, et al. In vivo PET imaging of cardiac presynaptic sympathoneuronal mechanisms in the rat. J Nucl Med 2008;49:1189-1195.
33Cauchon N, Langlois R, Rousseau JA, et al. PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V. Eur J Nucl Med Mol Imaging 2007;34:247-258.
34Laitinen L, Saraste A, Weidl E, et al. Evaluation of αvβ3 Integrin- Evaluation of alphavbeta3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ Cardiovasc Imaging 2009;2:331-338.
35Wu JC, Inubushi M, Sundaresan G, Schelbert HR, Gambhir SS. Positron emission tomography imaging of cardiac reporter gene expression in living rats. Circulation 2002;106:180-183.
36Acton PD, Zhou R. Imaging reporter genes for cell tracking with PET and SPECT. Q J Nucl Med Mol Imaging 2005;49:349-360.
37Wehrl HF, Judenhofer MS, Wiehr S, Pichler BJ. Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging. 2009;36 (Suppl 1):S56-68.
38Hadrian R, Palmes D. Animal models of secondary lymphedema: new approaches in the search for therapeutic options. Lymphat Res Biol 2017;15:2-16.
Article is only available in PDF format. Show PDF
2024 ©️ Galenos Publishing House