Radioisotopes and Biomedical Applications in Nuclear Medicine
PDF
Cite
Share
Request
Review
P: 10-14
March 2019

Radioisotopes and Biomedical Applications in Nuclear Medicine

Nucl Med Semin 2019;5(1):10-14
1. Ege Üniversitesi Nükleer Bilimler Enstitüsü, İzmir, Türkiye
No information available.
No information available
Publish Date: 03.04.2019
PDF
Cite
Share
Request

ABSTRACT

Nuclear imaging is a diagnostic medical imaging method that uses radiopharmaceuticals or radiotracers to examine the physiology and metabolism of the body. This imaging modality is the result of radiation emitted from the body as a result of the application of radiopharmaceuticals, which are radionuclide-containing drugs, to patients. One of the most common imaging modalities in nuclear medicine studies is positron emission tomography and the other is single-photon emission computed tomography. The produced imaging is used not only for diagnostic purposes such as detection of functional abnormalities or early imaging of tumors but also provides useful information for treatment planning and follow-up.

References

1Ünak P. Uygulamalı Temel Radyofarmasi. İçinde: Ünak P, Durmuş Altun G, Teksöz S, Müftüler FZB, editörler. Radyasyon ve Radyoaktivite. İstanbul: Nobel Tıp Kitapevleri; 2017:3-32.
2Ünak P, Teksöz S. Uygulamalı Temel Radyofarmasi. İçinde: Ünak P, Durmuş Altun G, Teksöz S, Müftüler FZB, editörler. SPECT Radyofarmasötikleri. İstanbul: Nobel Tıp Kitapevleri; 2017:33-70.
3Lee YS. Radiopharmaceuticals for molecular imaging. Open Nucl Med J 2010;2:178-185.
4Mahajan A, Goh V, Basu S, et al. Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine? Clin Radiol 2015;70:1060-1082.
5Muftuler FZB, Kilcar AY, Unak P. A perspective on plant origin radiolabeled compounds, their biological affinities and interaction between plant extracts with radiopharmaceuticals. Journal of Radioanalytical and Nuclear Chemistry 2015;306:1-9.
6Muftuler FZB, Unak P. A perspective on 99mTc and 125/131I labeled receptor targeted compounds and their in vitro/in vivo affinities. Journal of Radioanalytical and Nuclear Chemistry 2017;314:1-6.
7Unak G, Ozkaya F, Medine EI, et al. Gold nanoparticle probes: Design and in vitro applications in cancer cell culture. Colloids Surf B Biointerfaces 2012;90:217-226.
8Guldu OK, Ünak P, Timur S. A novel theranostic nanobioconjugate: 125/131 I labeled phenylalanine conjugated boron nitride nanotubes. J Radioanal Nucl Chem 2017;311:1751-1762.
9İçhedef Ç, Teksöz S, Ünak P, et al. Bioevaluation of 99mTc(CO)3-Guanine in vitro and in vivo. J Radioanal Nucl Chem 2012;292:739-743.
10Yilmaz B, Teksoz S, Kilcar AY, et al. In vitro/in vivo evaluation of radiolabeled [(99m)Tc(CO)3](+)-hydroxyurea and fluorescein isothiocyanate-hydroxyurea. Cancer Biother Radiopharm 2016;31:14-19.
11Alan ŞAA, İçhedef Ç, Medine E İ, et al. Preparation and in vivo-in vitro evaluation of technetium-99m-labeled melphalan as a potential imaging agent. Asian Journal of Biomaterial Research 2017;3:39-50.
12Ucar E, Teksoz S, İçhedef C, et al. Synthesis, characterization and radiolabeling of folic acid modified nanostructured lipid carriers as a contrast agent and drug delivery system. Appl Radiat and Isot 2017;119:72-79.
Article is only available in PDF format. Show PDF
2024 ©️ Galenos Publishing House