Targeted Alpha Radionuclide Therapy (TAT)-Ac-225 Radiopharmaceuticals
PDF
Cite
Share
Request
Review
P: 16-24
March 2023

Targeted Alpha Radionuclide Therapy (TAT)-Ac-225 Radiopharmaceuticals

Nucl Med Semin 2023;9(1):16-24
1. İstanbul Üniversitesi-Cerrahpaşa, Cerrahpaşa Eczacılık Fakültesi, Radyofarmasi Anabilim Dalı, İstanbul, Türkiye
2. Eczacıbaşı Monrol Nükleer Ürünler Sanayi ve Ticaret A.Ş., İstanbul, Türkiye
3. Ege Üniversitesi Nükleer Bilimler Enstitüsü, Nükleer Uygulamalar Anabilim Dalı, İzmir, Türkiye
No information available.
No information available
Publish Date: 17.04.2023
PDF
Cite
Share
Request

ABSTRACT

Targeted alpha therapy (TAT) has become increasingly popular in recent years due to its easy application in patients with multiple metastases, its ability to treat multiple lesions simultaneously, and its ability to be used in combination with other treatment methods. TAT is performed by chelate conjugated-targeting molecules such as small peptides, peptidomimetics, monoclonal antibodies, biomolecules and small inhibitor molecules tagged with alpha-emiting radionuclides. It is possible to obtain Actinium-225 in various ways. The majority of Ac-225 used for preclinical research and clinical administration is radiochemically isolated from build-up sources of thorium-229.

References

1 Poty S, Francesconi LC,  McDevitt MR, et al. Alpha Emitters for Radiotherapy: Basic Radiochemistry to Clinical Studies  Part 2. J Nucl Med 2018;59:1020-1027.
2 Guerra Liberal FDC, O'Sullivan JM, McMahon SJ, Prise KM. Targeted Alpha Therapy: Current Clinical Applications. Cancer Biother Radiopharm 2020;35:404-417.
3 Thiele NA, Wilson JJ. Actinium-225 for Targeted α Therapy: Coordination Chemistry and Current Chelation Approaches. Cancer Biother Radiopharm 2018;33:336-348.
4 Thorek DLJ, Ku AT, Mitsiades N, et al. Harnessing Androgen Receptor Pathway Activation for Targeted Alpha Particle Radioimmunotherapy of Breast Cancer. Clin Cancer Res 2019;25:881-891.
5 Dhiman D, Vatsa R, Sood A. Challenges and opportunities in developing Actinium-225 radiopharmaceuticals. Nucl Med Commun 2022;43:970-977.
6 Staudacher AH, Liapis V, Brown MP. Therapeutic targeting of tumor hypoxia and necrosis with antibody α-radioconjugates. Antibody Therapeutics 2018;1:75-83.
7 Sindhu KK, Nehlsen AD, Stock RG. Radium-223 for Metastatic Castrate-Resistant Prostate Cancer. Pract Radiat Oncol 2022;12:312-316.
8 Dizdarevic S, McCready R, Vinjamuri S. Radium-223 dichloride in prostate cancer: proof of principle for the use of targeted alpha treatment in clinical practice. Eur J Nucl Med Mol Imaging 2020;47:192-217.
9 Kelly JM, Amor-Coarasa A, Sweeney E, Wilson JJ, Causey PW, Babich JW. A suitable time point for quantifying the radiochemical purity of 225Ac-labeled radiopharmaceuticals. EJNMMI Radiopharm Chem 2021;6:38.
10 Scheinberg DA, McDevitt MR. Actinium-225 in targeted alpha-particle therapeutic applications. Curr Radiopharm 2011;4:306-320.
11 Radchenko V, Engle JW, Wilson JJ, et al. Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes. J Chromatogr A 2015;1380:55-63.
12 Radchenko V, Morgenstern A, Jalilian AR, et al. Production and Supply of α-Particle-Emitting Radionuclides for Targeted α-Therapy. J Nucl Med 2021;62:1495-1503.
13 Robertson AKH, Ramogida CF, Schaffer P, Radchenko V. Development of 225Ac Radiopharmaceuticals: TRIUMF Perspectives and Experiences. Curr Radiopharm 2018;11:156-172.
14 I. A. E. Agency, “Report of a Technical Meeting on "Alpha emitting radionuclides and radiopharmaceuticals for therapy," International Atomic Energy Agency (IAEA), 2013. [Online]. Available: https://inis.iaea.org/collection/NCLCollectionStore/_Public/45/091/45091405.pdf?r=1
15 Morgenstern A, Bruchertseifer F, Apostolidis C. Bismuth-213 and actinium-225 -- generator performance and evolving therapeutic applications of two generator-derived alpha-emitting radioisotopes. Curr Radiopharm 2012;5:221-227.
16 Aliev R, Vasiliev A, Ostapenko V, et al. Isolation of Medicine-Applicable Actinium-225 from Thorium Targets Irradiated by Medium-Energy Protons. Solvent Extraction and Ion Exchange 2014;32:pp 468-477.
17 Ferrier MG, Radchenko V, Wilbur DS. Radiochemical aspects of alpha emitting radionuclides for medical application. Radiochimica Acta 2019;107:1065-1085.
18 Junior JAO, Starovoitova V, Jalilian A, et al. Report on Joint IAEA-JRC Workshop: Supply of Ac-225. No: October; 2018.
19 Publication IAEA, Management of Disused Radioactive Lightning Conductors and Their Associated Radioactive Sources, no. NW-T-1.15. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 2022.
20 Ferrier MG, Batista ER, Berg JM, et al. Spectroscopic and computational investigation of actinium coordination chemistry. Nat Commun 2016;7:12312.
21 Ferrier MG, Stein BW, Batista ER, et al. Synthesis and Characterization of the Actinium Aquo Ion. ACS Cent Sci 2017;3:176-185.
22 Davis IA, Glowienka KA, Boll RA, et al. Comparison of 225actinium chelates: tissue distribution and radiotoxicity. Nucl Med Biol 1999;26:581-589.
23 Cole WC, DeNardo SJ, Meares CF, et al. Comparative serum stability of radiochelates for antibody radiopharmaceuticals. J Nucl Med 1987;28:83-90.
24 Meares CF, Moi MK, Diril, H et al. Macrocyclic chelates of radiometals for diagnosis and therapy. Br J Cancer Suppl 1990;10:21-26.
25 Deal KA, Davis IA, Mirzadeh S, Kennel SJ, Brechbiel MW. Improved in vivo stability of actinium-225 macrocyclic complexes. J Med Chem 1999;42:2988-2992.
26 Borchardt PE, Yuan RR, Miederer M, McDevitt MR, Scheinberg DA. Targeted actinium-225 in vivo generators for therapy of ovarian cancer. Cancer Res 2003;63:5084-5090.
27 Singh Jaggi J, Henke E, Seshan SV, et al. Selective alpha-particle mediated depletion of tumor vasculature with vascular normalization. PLoS One 2007;2:e267.
28 Miederer M, Henriksen G, Alke A, et al. Preclinical evaluation of the alpha-particle generator nuclide 225Ac for somatostatin receptor radiotherapy of neuroendocrine tumors. Clin Cancer Res 2008;14:3555-3561.
29 Essler M, Gärtner FC, Neff F, et al. Therapeutic efficacy and toxicity of 225Ac-labelled vs. 213Bi-labelled tumour-homing peptides in a preclinical mouse model of peritoneal carcinomatosis. Eur J Nucl Med Mol Imaging 2012;39:602-612.
30 Rosenblat TL, McDevitt MR, Carrasquillo JA, et al. Treatment of Patients with Acute Myeloid Leukemia with the Targeted Alpha-Particle Nanogenerator Actinium-225-Lintuzumab. Clin Cancer Res 2022;28:2030-2037.
31 Kratochwil C, Bruchertseifer F, Giesel FL, et al. 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J Nucl Med 2016;57:1941-1944.
32 Ballal S, Yadav MP, Bal C, Sahoo RK, Tripathi M. Broadening horizons with 225Ac-DOTATATE targeted alpha therapy for gastroenteropancreatic neuroendocrine tumour patients stable or refractory to 177Lu-DOTATATE PRRT: first clinical experience on the efficacy and safety. Eur J Nucl Med Mol Imaging 2020 ;47:934-946.
33 Thiele NA, Brown V, Kelly JM, et al. An Eighteen-Membered Macrocyclic Ligand for Actinium-225 Targeted Alpha Therapy. Angew Chem Int Ed Engl 2017;56:14712-14717.
34Pallares RM, Abergel RJ. Development of radiopharmaceuticals for targeted alpha therapy: Where do we stand? Front Med (Lausanne) 2022;9:1020188.
35 de Kruijff RM, Wolterbeek HT, Denkova AG. A Critical Review of Alpha Radionuclide Therapy-How to Deal with Recoiling Daughters? Pharmaceuticals (Basel) 2015;8:321-336.
36 Kratochwil C, Bruchertseifer F, Giesel F, Apostolidis C, Haberkorn U, Morgenstern A, Ac-225-DOTATOC - an empiric dose finding for alpha particle emitter based radionuclide therapy of neuroendocrine tumors. J Nucl Med 2015;56: supplement p.1232.
37 Pretze M, Kunkel F, Runge R, et al. Ac-EAZY! Towards GMP-Compliant Module Syntheses of 225Ac-Labeled Peptides for Clinical Application. Pharmaceuticals (Basel) 2021;14:652.
38 Poty S, Membreno R , Glaser JM, et al. The inverse electron-demand Diels-Alder reaction as a new methodology for the synthesis of 225Ac-labelled radioimmunoconjugates. Chem Commun (Camb) 2018;54:2599-2602.
39 Kruijff RM, Raavé R, Kip A, et al. The in vivo fate of 225Ac daughter nuclides using polymersomes as a model carrier. Sci Rep 2019;9:11671.
40 Ramogida CF, Robertson AKH, Jermilova U, et al. Evaluation of polydentate picolinic acid chelating ligands and an α-melanocyte-stimulating hormone derivative for targeted alpha therapy using ISOL-produced 225Ac. EJNMMI Radiopharm Chem 2019;4:21.
41Shukurov R, Veliyev M, Dadashov Z, Isayev J, Novruzov F, Labeling process and quality control results of 225Ac-PSMA-617 for targeted alpha particle therapy for metastatic prostate cancer. J Nucl Med 2019;60: supplement 1 p. 1611. [Online]. Available: https://jnm.snmjournals.org/content/60/
Article is only available in PDF format. Show PDF
2024 ©️ Galenos Publishing House