The Potential Effect of PET on Radiotherapy Treatment Planning in Neuro-oncology
PDF
Cite
Share
Request
Review
P: 150-155
November 2023

The Potential Effect of PET on Radiotherapy Treatment Planning in Neuro-oncology

Nucl Med Semin 2023;9(3):150-155
1. Sağlık Bilimleri Üniversitesi Türkiye, Van Eğitim ve Araştırma Hastanesi, Radyasyon Onkolojisi Kliniği, Van, Türkiye
2. Gazi Üniversitesi Tıp Fakültesi, Radyasyon Onkolojisi Anabilim Dalı, Ankara, Türkiye
No information available.
No information available
Publish Date: 28.12.2023
PDF
Cite
Share
Request

ABSTRACT

Radiation therapy plays a key role in the treatment of central nervous system tumors. In modern radiation therapy applications such as intensity-modulated radiotherapy, the precise delineation of tumor tissue from normal tissues is crucial for both tumor control and the reduction of treatment-related side effects. Current routine practices often use anatomical-morphological imaging methods, such as contrast-enhanced magnetic resonance, to delineate target volumes in radiation therapy planning. In contrast to conventional studies, positron emission tomography (PET) can provide further information about the biology, molecular characteristics, and viability of the tumor. PET, which allows us to determine biological treatment volumes, can guide the radiation therapy planning process in situations where conventional studies fall short. While PET-guided planning has become a standard tool in the radiation therapy planning of visceral tumors such as prostate, lung, and cervix, its use is still quite limited in neuro-oncological tumors. This review will focus on the current and potential future applications of PET in neuro-oncological radiation therapy planning.

Keywords:
Neuro-oncology, radiotherapy, PET

References

1
Rahman R, Sulman E, Haas-Kogan D, Cagney DN. Update on Radiation Therapy for Central Nervous System Tumors. Hematol Oncol Clin North Am 2022;36:77-93.
2
Rykkje AM, Li D, Skjøth-Rasmussen J, et al. Surgically Induced Contrast Enhancements on Intraoperative and Early Postoperative MRI Following High-Grade Glioma Surgery: A Systematic Review. Diagnostics (Basel) 2021;11.
3
Verma N, Cowperthwaite MC, Burnett MG, Markey MK. Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro Oncol 2013;15:515-534.
4
Harat M, Rakowska J, Harat M, et al. Combining amino acid PET and MRI imaging increases accuracy to define malignant areas in adult glioma. Nat Commun 2023;14:4572.
5
Newbold K, Powell C. PET/CT in Radiotherapy Planning for Head and Neck Cancer. Front Oncol 2012;2:189.
6
Cooke SA, de Ruysscher D, Reymen B, et al. 18F-FDG-PET guided vs whole tumour radiotherapy dose escalation in patients with locally advanced non-small cell lung cancer (PET-Boost): Results from a randomised clinical trial. Radiother Oncol 2023;181:109492.
7
Adam JA, Arkies H, Hinnen K, et al. 18F-FDG-PET/CT guided external beam radiotherapy volumes in inoperable uterine cervical cancer. Q J Nucl Med Mol Imaging 2018;62:420-428.
8
Seol KH, Lee JE. PET/CT planning during chemoradiotherapy for esophageal cancer. Radiat Oncol J 2014;32:31-42.
9
Sakellis CG, Jacene HA. Imaging for Radiation Planning in Breast Cancer. Semin Nucl Med 2022;52:542-550.
10
Phillips EH, Iype R, Wirth A. PET-guided treatment for personalised therapy of Hodgkin lymphoma and aggressive non-Hodgkin lymphoma. Br J Radiol 2021;94:20210576.
11
Petit C, Delouya G, Taussky D, et al. PSMA-PET/CT-Guided Intensification of Radiation Therapy for Prostate Cancer (PSMAgRT): Findings of Detection Rate, Effect on Cancer Management, and Early Toxicity From a Phase 2 Randomized Controlled Trial. Int J Radiat Oncol Biol Phys 2023;116:779-787.
12
Galldiks N, Niyazi M, Grosu AL, et al. Contribution of PET imaging to radiotherapy planning and monitoring in glioma patients - a report of the PET/RANO group. Neuro Oncol 2021;23:881-893.
13
Herholz K. Brain Tumors: An Update on Clinical PET Research in Gliomas. Semin Nucl Med 2017;47:5-17.
14
Langen KJ, Eschmann SM. Correlative imaging of hypoxia and angiogenesis in oncology. J Nucl Med 2008;49:515-516.
15
Verger A, Kas A, Darcourt J, Guedj E. PET Imaging in Neuro-Oncology: An Update and Overview of a Rapidly Growing Area. Cancers 2022;14:1103.
16
Niyazi M, Andratschke N, Bendszus M, et al. ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma. Radiother Oncol 2023;184.
17
Kracht LW, Miletic H, Busch S, et al. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 2004;10:7163-7170.
18
Pauleit D, Floeth F, Hamacher K, et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 2005;128:678-687.
19
Pafundi DH, Laack NN, Youland RS, et al. Biopsy validation of 18F-DOPA PET and biodistribution in gliomas for neurosurgical planning and radiotherapy target delineation: results of a prospective pilot study. Neuro Oncol 2013;15:1058-1067.
20
Verburg N, Koopman T, Yaqub MM, et al. Improved detection of diffuse glioma infiltration with imaging combinations: a diagnostic accuracy study. Neuro Oncol 2020;22:412-422.
21
Seidlitz A, Beuthien-Baumann B, Löck S, et al. Final Results of the Prospective Biomarker Trial PETra: [11C]-MET-Accumulation in Postoperative PET/MRI Predicts Outcome after Radiochemotherapy in Glioblastoma. Clin Cancer Res 2021;27:1351-1360.
22
Suchorska B, Jansen NL, Linn J, et al. Biological tumor volume in 18FET-PET before radiochemotherapy correlates with survival in GBM. Neurology 2015;84:710-719.
23
Weber DC, Zilli T, Buchegger F, et al. [(18)F]Fluoroethyltyrosine- positron emission tomography-guided radiotherapy for high-grade glioma. Radiat Oncol 2008;3:44.
24
Niyazi M, Geisler J, Siefert A, et al. FET-PET for malignant glioma treatment planning. Radiother Oncol 2011;99:44-48.
25
Munck Af Rosenschold P, Costa J, Engelholm SA, et al. Impact of [18F]-fluoro-ethyl-tyrosine PET imaging on target definition for radiation therapy of high-grade glioma. Neuro Oncol 2015;17:757-763.
26
Fleischmann DF, Unterrainer M, Schön R, et al. Margin reduction in radiotherapy for glioblastoma through 18F-fluoroethyltyrosine PET? - A recurrence pattern analysis. Radiother Oncol 2020;145:49-55.
27
Langen K-J, Galldiks N, Hattingen E, Shah NJ. Advances in neuro-oncology imaging. Nat Rev Neurol 2017;13:279-289.
28
Grosu AL, Weber WA, Franz M, et al. Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 2005;63:511-519.
29
Debus C, Waltenberger M, Floca R, et al. Impact of 18F-FET PET on Target Volume Definition and Tumor Progression of Recurrent High Grade Glioma Treated with Carbon-Ion Radiotherapy. Sci Rep 2018;8:7201.
30
Oehlke O, Mix M, Graf E, et al. Amino-acid PET versus MRI guided re-irradiation in patients with recurrent glioblastoma multiforme (GLIAA) – protocol of a randomized phase II trial (NOA 10/ARO 2013-1). BMC Cancer 2016;16:769.
31
Grosu A-L, Astner ST, Riedel E, et al. An Interindividual Comparison of O-(2- [18F]Fluoroethyl)-L-Tyrosine (FET)– and L-[Methyl-11C]Methionine (MET)–PET in Patients With Brain Gliomas and Metastases. Int J Radiat Oncol Biol Phys 2011;81:1049-1058.
32
Becherer A, Karanikas G, Szabó M, et al. Brain tumour imaging with PET: A comparison between [ 18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging 2003;30:1561-1567.
33
Kratochwil C, Combs SE, Leotta K, et al. Intra-individual comparison of 18F-FET and 18F-DOPA in PET imaging of recurrent brain tumors. Neuro Oncol 2013;16:434-440.
34
Albert NL, Weller M, Suchorska B, et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol 2016;18:1199-1208.
35
Barry N, Francis RJ, Ebert MA, et al. Delineation and agreement of FET PET biological volumes in glioblastoma: results of the nuclear medicine credentialing program from the prospective, multi-centre trial evaluating FET PET In Glioblastoma (FIG) study-TROG 18.06. Eur J Nucl Med Mol Imaging 2023;50:3970-3981.
36
Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 2021;23:1231-1251.
37
Souhami L, Seiferheld W, Brachman D, et al. Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of Radiation Therapy Oncology Group 93-05 protocol. Int J Radiat Oncol Biol Phys 2004;60:853-860.
38
Gondi V. Radiotherapy intensification for glioblastoma: enhancing the backbone of treatment. Chin Clin Oncol 2021;10:39.
39
Laack NN, Pafundi D, Anderson SK, et al. Initial Results of a Phase 2 Trial of <sup>18</sup>F-DOPA PET-Guided Dose-Escalated Radiation Therapy for Glioblastoma. Int J Radiat Oncol Biol Phys 2021;110:1383-1395.
40
Ostrom QT, Gittleman H, Farah P, et al. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2006-2010. Neuro Oncol 2013;15(Suppl 2):ii1-ii56.
41
Rogers CL, Won M, Vogelbaum MA, et al. High-risk Meningioma: Initial Outcomes From NRG Oncology/RTOG 0539. Int J Radiat Oncol Biol Phys 2020;106:790-799.
42
Dutour A, Kumar U, Panetta R, et al. Expression of somatostatin receptor subtypes in human brain tumors. Int J Cancer 1998;76:620-627.
43
Rachinger W, Stoecklein VM, Terpolilli NA, et al. Increased 68Ga-DOTATATE uptake in PET imaging discriminates meningioma and tumor-free tissue. J Nucl Med 2015;56:347-353.
44
Afshar-Oromieh A, Giesel FL, Linhart HG, et al. Detection of cranial meningiomas: comparison of 68Ga-DOTATOC PET/CT and contrast-enhanced MRI. Eur J Nucl Med Mol Imaging 2012;39:1409-1415.
45
Milker-Zabel S, Zabel-du Bois A, Henze M, et al. Improved target volume definition for fractionated stereotactic radiotherapy in patients with intracranial meningiomas by correlation of CT, MRI, and [68Ga]-DOTATOC-PET. Int J Radiat Oncol Biol Phys 2006;65:222-227.
46
Galldiks N, Albert NL, Sommerauer M, et al. PET imaging in patients with meningioma—report of the RANO/PET Group. Neuro Oncol 2017;19:1576-1587.
47
Perlow HK, Siedow M, Gokun Y, et al. 68Ga-DOTATATE PET-Based Radiation Contouring Creates More Precise Radiation Volumes for Patients With Meningioma. Int J Radiat Oncol Biol Phys 2022;113:859-865.
48
Astner ST, Dobrei-Ciuchendea M, Essler M, et al. Effect of 11C-methionine-positron emission tomography on gross tumor volume delineation in stereotactic radiotherapy of skull base meningiomas. Int J Radiat Oncol Biol Phys 2008;72:1161-1167.
49
Soto-Montenegro ML, Peña-Zalbidea S, Mateos-Pérez JM, et al. Meningiomas: A Comparative Study of 68Ga-DOTATOC, 68Ga-DOTANOC and 68Ga-DOTATATE for Molecular Imaging in Mice. PLoS One 2014;9:e111624.
50
Henze M, Schuhmacher J, Hipp P, et al. PET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J Nucl Med 2001;42:1053-1056.