Current Imaging in Metastatic Bone Diseases: Does PET Replace Bone Scintigraphy
PDF
Cite
Share
Request
Review
P: 92-101
March 2022

Current Imaging in Metastatic Bone Diseases: Does PET Replace Bone Scintigraphy

Nucl Med Semin 2022;8(1):92-101
1. Sağlık Bilimleri Üniversitesi, Prof. Dr. Cemil Taşcıoğlu Hastanesi, Nükleer Tıp Anabilim Dalı, İstanbul, Türkiye
No information available.
No information available
Publish Date: 15.04.2022
PDF
Cite
Share
Request

ABSTRACT

Bone scintigraphy is a nuclear medicine modality that has been used for the detection and follow-up of bone metastases of malignant tumors. Bone scintigraphy, which provides indirect visualization of metastatic lesions by showing osteoblastic activity in the bone tissue, is not sensitive enough in the detection of osteolytic metastases, early stages of metastases, and small lesions. Conventional [magnetic resonance (MR), diffusion-weighted MR] and molecular imaging methods [F-18 fluorodeoxyglucose positron emission tomography/computerized tomography (FDG PET/CT), Ga-68 prostate specific membrane antigen PET/CT, etc.] that perform tumor-specific imaging, complement and gradually replace bone scintigraphy in cases where it is insufficient. In this review, the effectiveness of imaging methods in the detection of bone metastases in malignancies that most commonly metastasize to the skeletal system is examined, especially focusing on the changes in the current use of Tc-99m methylen diphosphonate bone scintigraphy.

References

1Antoniou A, Chaudhry MA, Davila D. Evaluation of Osseous Metastasis in Bone Scintigraphy. Semin Nucl Med 2015;45:3-15.
2Isaac A, Dalili D, Dalili D, Weber MA. State-of-the-art imaging for diagnosis of metastatic bone disease. Radiologe 2020;60 (Suppl 1):S1-S16.
3Selvaggi G, Scagliotti GV. Management of bone metastases in cancer: a review. Crit Rev Oncol Hematol 2005;56:365-378.
4Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 2006;12:6243-6249.
5Van de Ven S, van den Bongard D, Pielkenrood B, et al. Patient-Reported Outcomes of Oligometastatic Patients After Conventional or Stereotactic Radiation Therapy to Bone Metastases: An Analysis of the PRESENT Cohort. Int J Radiation Oncol Biol Phys 2020;107:39-47.
6Paget S. The distribution of secondary growth in cancer of the breast. Lancet 1889;1:571-573.
7Roodman DG, Silbermann R. Mechanisms of osteolytic and osteoblastic skeletal lesions. Bonekey Rep 4 2015;4 (Article number: 753):1-7.
8Mettler FA, Guiberteau MJ. Skeletal system. In: Essentials of Nuclear Medicine and Molecular Imaging 7th Edition. Mettler FA, Guiberteau MJ. Philadelphia: ELSEVIER 2019:247.
9Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013;63:11-30.
10Sugiura H, Yamada K, Sugiura T, Hida T, Mitsudomi T. Predictors of survival in patients with bone metastasis of lung cancer. Clin Orthop Relat Res 2008;466:729-736.
11Tsuya A, Kurata T, Tamura K, Fukuoka M. Skeletal metastases in non small cell lung cancer: a retrospective study. Lung Cancer 2007;57:229-232.
12Batson OV. The function of the vertebral veins and their role in the spread of metastases. Ann Surg 1940;112:138.
13Shehab D, Elgazzar AH. Musculoskeletal system. In:The Pathophysiologic Basis of Nuclear Medicine Second Edition. Elgazzar AH. Berlin:Springer 2006;192.
14Nakamoto Y, Cohade C, Tatsumi M, Hammoud D, Wahl RL. CT appearance of bone metastases detected with FDG PET as part of the same PET/CT examination. Radiology 2005;237:627-634.
15Chang MC, Chen JH, Liang JA, et al. Meta-analysis comparison of F-18 fluorodeoxyglucose-positron emission tomography and bone scintigraphy in the detection of bone metastasis in patients with lung cancer. Acad Radiol 2012;19:349-357.
16Liu T, Xu JY, Xu W, Bai YR, Yan WL, Yang HL. Fluorine-18 deoxyglucose positron emission tomography, magnetic resonance imaging and bone scintigraphy for the diagnosis of bone metastases in patients with lung cancer: which one is the best?--a meta-analysis. Clin Oncol (R Coll Radiol) 2011;23:350-358.
17Ak I, Sivrikoz MC, Entok E, Vardareli E. Discordant findings in patients with non-small-cell lung cancer: absolutely normal bone scans versus disseminated bone metastases on positron-emission tomography/computed tomography. Eur J Cardiothorac Surg 2010;37:792-796.
18NCCN Guidelines: Non-Small Cell Lung Cancer, Version 1.2022.
19NCCN Guidelines: Small Cell Lung Cancer, Version 2.2022.
20Al-Muqbel KM, Yaghan RJ. Effectiveness of 18F-FDG-PET/CT vs Bone Scintigraphy in Treatment Response Assessment of Bone Metastases in Breast Cancer. Medicine (Baltimore) 2016;95:3753.
21Even-Sapir E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med 2005;46:1356-1367.
22Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 1998;16:3375-3379.
23Ohta M, Tokuda Y, Suzuki Y, et al. Whole body PET for the evaluation of bony metastases in patients with breast cancer: comparison with Tc99m-MDP bone scintigraphy. Nucl Med Commun 2001;22:875-879.
24Damle NA, Bal C, Bandopadhyaya GP, et al. The role of 18F-fluoride PETCT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: A comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol 2013;31:262-269.
25Pires AO, Borges US, Lopes-Costa PV, Gebrim LH, da Silva BB. Evaluation of bone metastases from breast cancer by bone scintigraphy and positron emission tomography/computed tomography imaging. Eur J Obstet Gynecol Reprod Biol 2014;180:138-141.
26Liu T, Cheng T, Xu W, Yan WL, Liu J, Yang HL. A meta-analysis of F-18 FDG-PET, MRI and bone scintigraphy for diagnosis of bone metastases in patients with breast cancer. Skeletal Radiol 2011;40:523-531.
27Rong J, Wang S, Ding Q, Yun M, Zheng Z, Ye S. Comparison of 18FDG PET-CT and bone scintigraphy for detection of bone metastases in breast cancer patients. A meta-analysis Surg Oncol 2013;22:86-91.
28Nakai T, Okuyama C, Kubota T, et al. Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer. Eur J Nucl Med Mol Imaging 2005;32:1253-1258.
29Hansen JA, Naghavi-BehzadID, GerkeID O, et al. Diagnosis of bone metastases in breast cancer: Lesion-based sensitivity of dual-time point FDG-PET/CT compared to low-dose CT and bone scintigraphy. PLoS One 2021;16:e0260066.
30Yamaguchi T, Tamai K, Yamato M, Honma K, Ueda Y, Saotome K. Intertrabecular pattern of tumors metastatic to bone. Cancer 1996;78:1388-1394.
31Hayashi N, Costelloe CM, Hamaoka T, et al. A prospective study of bone tumor response assessment in metastatic breast cancer. Clin Breast Cancer 2013;13:24-30.
32Caglar M, Kupik O, Karabulut E, Høilund-Carlse PF. Detection of bone metastases in breast cancer patients in the PET/CT era: Do we still need the bone scan? Rev Esp Med Nucl Imagen Mol 2016;35:3-11.
33Van Es SC, Velleman T, Elias SG, et al. Assessment of Bone Lesions with (18)F-FDG-PET Compared to (99m)Technetium Bone Scintigraphy Leads to Clinically Relevant Differences in metastatic Breast Cancer Management. J Nucl Med 2021;62:177-183.
34NCN guideline: Breast cancer version 2.2022.
35Turpin A, Girard E, Baillet C et al. Imaging for Metastasis in Prostate Cancer: A Review. Front Oncol 2020;10:1-15.
36Bubendorf L, Schöpfer A, Wagner U, et al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol 2000;31:578-583.
37Hellman S, Weichselbaum RR. Oligometastases. J Clin Oncol 1995;13:8-10.
38Mottet N, van den Bergh RCN, Briers E et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent Eur Urol 2021;79:243-262.
39Suh CH, Shinagare AB, Westenfield AM, Ramaiya NH, Van den Abbeele AD, Kim KW. Yield of bone scintigraphy for the detection of metastatic disease in treatment-naive prostate cancer: a systematic review and meta-analysis. Clin Radiol 2018;73:158-167.
40Mottet N, Bellmunt J, Bolla M, et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol 2017;71:618-629.
41Parker C, Castro E, Fizazi K, et al. ESMO Guidelines Committee. Prostate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2020;31:1119-1134.
42Rouviere O, Vitry T, Lyonnet D. Imaging of prostate cancer local recurrences: why and how? Eur Radiol 2010;20:1254-1266.
43Shipley WU, Seiferheld W, Lukka HR, et al, Radiation with or without antiandrogen therapy in recurrent prostate cancer. N Engl J Med 2017;376:417-428.
44Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 2006;47:287-297.
45Beer AJ, Eiber M, Souvatzoglou M, Schwaiger M, Krause BJ. Radionuclide and hybrid imaging of recurrent prostate cancer. Lancet Oncol 2011;12:181-191.
46Kitajima K, Murphy RC, Nathan MA, et al. Detection of recurrent prostate cancer after radical prostatectomy:comparison of 11C-choline PET/CT with pelvic multiparametric MR imaging with endorectal coil. J Nucl Med 2014;55:223-232.
47Fuccio C, Castellucci P, Schiavina R, et al. Role of 11C-choline PET/CT in the restaging of prostate cancer patients showing a single lesion on bone scintigraphy. Ann Nucl Med 2010;24:485-492.
48Shen G, Deng H, Hu S, Jia Z. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skeletal Radiol 2014;43:1503-1513.
49Zhao R, Li Y, Nie L, Qin K, Zhang H, Shi H. The meta-analysis of the effect of 68Ga-PSMA-PET/CT diagnosis of prostatic cancer compared with bone scan. Medicine 2021;100:1-7(e25417).
50Uprimny C, Svirydenka A, Fritz J, et al. Comparison of [ 68 Ga]Ga-PSMA-11 PET/CT with [ 18 F]NaF PET/CT in the evaluation of bone metastases in metastatic prostate cancer patients prior to radionuclide therapy. Eur J Nucl Med Mol Imaging 2018;45:1873-1883.
51Zacho HD, Nielsen JB, Afshar-Oromieh A, et al. Prospective comparison of (68)Ga-PSMA PET/CT, (18)F-sodium fluoride PET/CT and diffusion weighted-MRI at for the detection of bone metastases in biochemically recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2018;45:1884-1897.
52Smith MR, Saad F, Chowdhury S, et al. Apalutamide treatment and metastasis-free survival in prostate cancer. N Engl J Med 2018;378:1408-1418.
53Ware RE, Williams S, Hicks RJ. Molecular Imaging of Recurrent and Metastatic Prostate Cancer Semin Nucl Med 2019;49:280-293.
54Ost P, Reynders D, Decaestecker K, et al. Surveillance or metastasis directed therapy for oligometastatic prostate cancer recurrence: A prospective, randomized, multicenter phase II trial. J Clin Oncol 2018;36:446-453.
55Fanti S, Goffin K, Hadaschik BA et al. Consensus statements on PSMA PET/CT response assessment criteria in prostate cancer. Eur J Nucl Med Mol Imaging. 2021;48:469-476.
56Fanti S, Minozzi S, Antoch G, et al. Consensus on molecular imaging and theranostics in prostate cancer. Lancet Oncol 201;19:e696-708.
57NCCN Prostate Cancer Guidelines Version 3.2022 - January 10, 2022.
58Tubiana-Hulin M. Incidence, prevalence and distribution of bone metastases. Bone 1991;12(Suppl 1):S9-10.
59Muresan MM, Olivier P, Leclère J, et al. Bone metastases from differentiated thyroid carcinoma. Endocr Relat Cancer 2008;15:37-49.
60Farooki A, Leung V, Tala H, Tuttle RM. Skeletal-related events due to bone metastases from differentiated thyroid cancer J Clin Endocrinol Metab 2012;97:2433-2439.
61Ito S, Kato K, Ikeda M, et al. Comparison of 18F-FDG PET and bone scintigraphy in detection of bone metastases of thyroid cancer. 2007 J Nucl Med 48:889-895.
62Qiu ZL, Xue YL, Song HJ, Luo QY. Comparison of the diagnostic and prognostic values of 99mTc-MDP-planar bone scintigraphy, 131I-SPECT/CT and 18F-FDG-PET/CT for the detection of bone metastases from differentiated thyroid cancer. Nucl Med Commun 2012;33:1232-1242.
63Schmidt GP, Schoenberg SO, Schmid R, et al. Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur Radiol 2007;17:939-949.
64Sakurai Y, Kawai H. Supplemental value of diffusion-weighted whole-body imaging with background body signal suppression (DWIBS) technique to whole-body magnetic resonance imaging in detection of bone metastases from thyroid cancer. J Med Imaging Radiat Oncol 2013;57:297-305.
65Nagamachi, S, Wakamatsu, H, Kiyohara, S, et al. Comparison of diagnostic and prognostic capabilities of 18F-FDG-PET/CT, 131I-scintigraphy, and diffusion-weighted magnetic resonance imaging for postoperative thyroid cancer. Jpn J Radiol 2011;29:413-422.
66Feine U, Lietzenmayer R, Hanke JP, Held J,Wöhrle H, Müller-Schauenburg W. Fluorine-18-FDG and iodine-131 uptake in thyroid cancer. J Nucl Med 1996;37:1468-1472.
67Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26:1-133.
68Ocak M, Demirci E, Kabasakal L, et al. Evaluation and comparison of Ga-68 DOTA-TATE and Ga-68 DOTA-NOC PET/CT imaging in well-differentiated thyroid cancer. Nucl Med Commun 2013;34:1084-1089.
69NCCN guideline version 3.2021 Thyroid carcinoma.
70Jadvar H, Desai B, Conti PS. Sodium 18F-fluoride PET/CT of bone, joint, and other disorders Semin Nucl Med 2015;45:58-65.
71Ota N, KatoK, IwanoS, et al. Comparisonof 18F-fluoride PET/CT, 18F-FDG PET/CT and bone scintigraphy (planar and SPECT) in detection of bone metastases of differentiated thyroid cancer:A pilot study. Br J Radiol 2014;87:1-8(20130444).
72Freudenberg LS, Antoch G, Jentzen W, et al. Value of (124)I-PET/CT in staging of patients with differentiated thyroid cancer. Eur Radiol 2004;14:2092-2098.
73Santhanam P, Taieb D, Solnes L, Marashdeh W, Ladenson PW. Utility of I-124 PET/CT in identifying radioiodine avid lesions in differentiated thyroid cancer: a systematic review and meta-analysis. Clin Endocrinol (Oxf) 2017;86:645-651.
74Theerakulpisut D, Wongsurawat N, Supakalin N, Somboonporn C. Multiple Regression Analysis of Predictors of Bone Scintigraphy Positivity in Patients with Head and Neck Cancers. Nucl Med Mol Imaging 2018;52:62-68.
75Sakisuka T, Kashiwagi N, Doi H, et al. Prognostic factors for bone metastases from head and neck squamous cell carcinoma: A case series of 97 patients. Mol Clin Oncol 2021;15:246.
76Pietropaoli MP, Damron TA, Vermont AI. Bone metastases from squamous cell carcinoma of the head and neck. J Surg Oncol 2000;75:136‑141.
77Basu D, Siegel BA, McDonald DJ, Nussenbaum B. Detection of Occult Bone Metastases From Head and Neck Squamous Cell Carcinoma Impact of Positron Emission Tomography–Computed Tomography With Fluorodeoxyglucose F 18 Arch Otolaryngol Head Neck Surg 2007;33:801-805.
78Al-Bulushia NK, Abouzied ME. Comparison of 18F-FDG PET/CT scan and 99mTc-MDP bone scintigraphy in detecting bone metastasis in head and neck tumors Nuclear Medicine Communications 2016;37:583-588.
79Yi X, Fan M, Liu Y, Zhang H, Liu S. 18FDG PET and PET-CT for the detection of bone metastases in patients with head and neck cancer. A meta-analysis. Journal of Medical Imaging and Radiation Oncology 2013;57:674-679.
80Yang Z, Zhang Y, Shi W, et al. Is 18F-FDG PET/CT more reliable than 99mTc-MDP planar bone scintigraphy in detecting bone metastasis in nasopharyngeal carcinoma? Ann Nucl Med 2014;28:411-416.
81Figlin RA. Renal cell carcinoma: management of advanced disease. J Urol 1999;161:381-386.
82Nakanishi Y, Kitajima K, Yamada Y, et al. Diagnostic performance of (11)C-choline PET/CT and FDG PET/CT for staging and restaging of renal cell cancer. Ann Nucl Med 2018;32:658-668.
83Özülker T, Özülker F, Özbek E, Özpaçaci T. A prospective diagnostic accuracy study of F-18 fluorodeoxyglucose-positron emission tomography/computed tomography in the evaluation of indeterminate renal masses. Nucl Med Commun 2011;32:265-272.
84Wang HY, Ding HJ, Chen JH, et al. Meta-analysis of the diagnostic performance of [18F]FDG-PET and PET/CT in renal cell carcinoma. Cancer Imaging 2012;12:464-474.
85Kang D, White RL Jr, Zuger J, Sasser HC, Teigland CM. Clinical use of fluorodeoxyglucose F-18 positron emission tomography for detection of renal cell carcinoma. J Urol 2004;171:1806-1809.
86Wu HC, Yen RF, Shen YY, Kao CH, Lin CC, Lee CC. Comparing whole body 18F-2-deoxyglucose positron emission tomography and technetium-99m methylene diphosphate bone scan to detect bone metastases in patients with renal cell carcinomas – a preliminary report. J Cancer Res Clin Oncol 2002;128:503-506.
87EAU Guidelines. Edn. presented at the EAU Annual Congress Milan 2021. ISBN 978-94-92671-13-4.
88https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1440 Kidney Cancer version 4, 2022.
Article is only available in PDF format. Show PDF
2024 ©️ Galenos Publishing House