Dynamic Radionuclide Myocardial Perfusion Imaging (SPECT and PET)
P: 42-61
April 2024

Dynamic Radionuclide Myocardial Perfusion Imaging (SPECT and PET)

Nucl Med Semin 2024;10(1):42-61
1. İstanbul Üniversitesi-İstanbul Tıp Fakültesi, Nükleer Tıp Anabilim Dalı, İstanbul, Türkiye
2. Ankara Üniversitesi Tıp Fakültesi, Nükleer Tıp Anabilim Dalı, Ankara, Türkiye
No information available.
No information available
Publish Date: 05.04.2024


The dynamic myocardial perfusion scintigraphy (MPS) single-photon emission computed tomography (SPECT), employing advancing cadmium zinc telluride (CZT) cardiac camera technology, is acknowledged as an efficacious method for appraising myocardial blood flow as an alternative to positron emission tomography (PET) agents. Combination of dynamic MPS with traditional MPS can contribute to the diagnosis and management of coronary artery disease (CAD), by improving diagnostic sensitivity and specificity of traditional MPS, as well as determination of CAD prognosis. Nevertheless, high-level evidence studies are imperative to standardize the application and assessment of dynamic MPS in clinical practice. PET perfusion imaging, in comparison to SPECT, affords superior image quality and diagnostic accuracy with reduced radiation exposure. Contemporary PET/computed tomography cameras, coupled with suitable PET radiopharmaceuticals, enable expedited imaging within a brief duration in a single session. The incorporation of blood flow measurement with quantitative evaluation serves to heighten both diagnostic accuracy and the predictive capacity for major cardiac events. Nonetheless, the utilization of dynamic PET perfusion imaging in clinical practice is considerably constrained due to its financial implications and the requisite availability of an in-house cyclotron or generator.

Keywords: Coronary artery disease, myocardial perfusion imaging, SPECT, PET


Al Badarin FJ, Malhotra S. Diagnosis and Prognosis of Coronary Artery Disease with SPECT and PET. Curr Cardiol Rep 2019;21:57.
Taqueti VR, Di Carli MF. Radionuclide myocardial perfusion imaging for the evaluation of patients with known or suspected coronary artery disease in the era of multimodality cardiovascular imaging. Prog Cardiovasc Dis 2015;57:644-653.
Berman DS, Kang X, Slomka PJ, et al. Underestimation of extent of ischemia by gated SPECT myocardial perfusion imaging in patients with left main coronary artery disease. J Nucl Cardiol 2007;14:521-528.
Ghadri JR, Pazhenkottil AP, Nkoulou RN, et al. Very high coronary calcium score unmasks obstructive coronary artery disease in patients with normal SPECT MPI. Heart 2011;97:998-1003.
Ziadi MC. Myocardial flow reserve (MFR) with positron emission tomography (PET)/computed tomography (CT): clinical impact in diagnosis and prognosis. Cardiovasc Diagn Ther 2017;7:206-218.
Dorbala S, Di Carli MF. Cardiac PET perfusion: prognosis, risk stratification, and clinical management. Semin Nucl Med 2014;44:344-357.
Ben-Haim S, Murthy VL, Breault C, et al. Quantification of myocardial perfusion reserve using dynamic SPECT imaging in humans: a feasibility study. J Nucl Med 2013;54:873-879.
Giubbini R, Bertoli M, Durmo R, et al. Comparison between N13NH3-PET and 99mTc-Tetrofosmin-CZT SPECT in the evaluation of absolute myocardial blood flow and flow reserve. J Nucl Cardiol 2021;28:1906-1918.
Otaki Y, Manabe O, Miller RJ, et al. Quantification of myocardial blood flow by CZT-SPECT with motion correction and comparison with 15O-water PET. J Nucl Cardiol 2021;28:1477-1486.
Liga R, Neglia D, Kusch A, Favilli B, Giorgetti A, Gimelli A. Prognostic Role of Dynamic CZT Imaging in CAD Patients: Interaction Between Absolute Flow and CAD Burden. JACC Cardiovasc Imaging 2022;15:540-542.
Loukas M, Groat C, Khangura R, Owens DG, Anderson RH. The normal and abnormal anatomy of the coronary arteries. Clin Anat 2009;22:114-128.
Schelbert HR. Anatomy and physiology of coronary blood flow. J Nucl Cardiol 2010;17:545-554.
Camici PG, d’Amati G, Rimoldi O. Coronary microvascular dysfunction: mechanisms and functional assessment. Nat Rev Cardiol 2015;12:48-62.
Gdowski MA, Murthy VL, Doering M, Monroy-Gonzalez AG, Slart R, Brown DL. Association of Isolated Coronary Microvascular Dysfunction With Mortality and Major Adverse Cardiac Events: A Systematic Review and Meta-Analysis of Aggregate Data. J Am Heart Assoc 2020;9:e014954.
Pries AR, Reglin B. Coronary microcirculatory pathophysiology: can we afford it to remain a black box? Eur Heart J 2017;38:478-488.
Fearon WF, Kobayashi Y. Invasive Assessment of the Coronary Microvasculature: The Index of Microcirculatory Resistance. Circ Cardiovasc Interv 2017;10:e005361.
Tonino PA, De Bruyne B, Pijls NH, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 2009;360:213-224.
van Nunen LX, Zimmermann FM, Tonino PA, et al. Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5-year follow-up of a randomised controlled trial. Lancet 2015;386:1853-1860.
Kelshiker MA, Seligman H, Howard JP, et al. Coronary flow reserve and cardiovascular outcomes: a systematic review and meta-analysis. Eur Heart J 2022;43:1582-1593.
Toth GG, Toth B, Johnson NP, et al. Revascularization decisions in patients with stable angina and intermediate lesions: results of the international survey on interventional strategy. Circ Cardiovasc Interv 2014;7:751-759.
Siebes M, Chamuleau SA, Meuwissen M, Piek JJ, Spaan JA. Influence of hemodynamic conditions on fractional flow reserve: parametric analysis of underlying model. Am J Physiol Heart Circ Physiol 2002;283:H1462-H1470.
Ong P, Safdar B, Seitz A, Hubert A, Beltrame JF, Prescott E. Diagnosis of coronary microvascular dysfunction in the clinic. Cardiovasc Res 2020;116:841-855.
Fearon WF, Balsam LB, Farouque HO, et al. Novel index for invasively assessing the coronary microcirculation. Circulation 2003;107:3129-3132.
Meuwissen M, Chamuleau SA, Siebes M, et al. Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate coronary lesions. Circulation 2001;103:184-187.
Layland J, Nerlekar N, Palmer S, Berry C, Oldroyd K. Invasive assessment of the coronary microcirculation in the catheter laboratory. Int J Cardiol 2015;199:141-149.
de Waard GA, Fahrni G, de Wit D, et al. Hyperaemic microvascular resistance predicts clinical outcome and microvascular injury after myocardial infarction. Heart 2018;104:127-134.
Danad I, Raijmakers PG, Driessen RS, et al. Comparison of coronary CT angiography, SPECT, PET, and hybrid imaging for diagnosis of ischemic heart disease determined by fractional flow reserve. JAMA Cardiol 2017;2:1100-1107.
Liga R, Vontobel J, Rovai D, et al. Multicentre multi-device hybrid imaging study of coronary artery disease: results from the EValuation of INtegrated Cardiac Imaging for the Detection and Characterization of Ischaemic Heart Disease (EVINCI) hybrid imaging population. Eur Heart J Cardiovasc Imaging 2016;17:951-960.
Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 2020;41:407-447.
Writing Committee Members; Gulati M, Levy PD, et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR guideline for the evaluation and diagnosis of chest pain: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2021;78:e187-e285.
Gimelli A, Liga R, Duce V, Kusch A, Clemente A, Marzullo P. Accuracy of myocardial perfusion imaging in detecting multivessel coronary artery disease: A cardiac CZT study. J Nucl Cardiol 2017;24:687-695.
Zavadovsky KV, Mochula AV, Boshchenko AA, et al. Absolute myocardial blood flows derived by dynamic CZT scan vs invasive fractional flow reserve: Correlation and accuracy. J Nucl Cardiol 2021;28:249-259.
Acampa W, Assante R, Mannarino T, et al. Low-dose dynamic myocardial perfusion imaging by CZT-SPECT in the identification of obstructive coronary artery disease. Eur J Nucl Med Mol Imaging 2020;47:1705-1712.
Danad I, Uusitalo V, Kero T, et al. Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: cutoff values and diagnostic accuracy of quantitative [15O] H2O PET imaging. J Am Coll Cardiol 2014;64:1464-1475.
Jain D, Wackers FJ, Mattera J, McMahon M, Sinusas AJ, Zaret BL. Biokinetics of technetium-99m-tetrofosmin: myocardial perfusion imaging agent: implications for a one-day imaging protocol. J Nucl Med 1993;34:1254-1259.
Wackers FJ, Berman DS, Maddahi J, et al. Technetium-99m hexakis 2-methoxyisobutyl isonitrile: human biodistribution, dosimetry, safety and preliminary comparison to thallium-201 for myocardial perfusion imaging. J Nucl Med 1989;30:301-311.
Da Silva AJ, Tang HR, Wong KH, Wu MC, Dae MW, Hasegawa BH. Absolute quantification of regional myocardial uptake of 99mTc-sestamibi with SPECT: experimental validation in a porcine model. J Nucl Med 2001;42:772-779.
Nkoulou R, Fuchs TA, Pazhenkottil AP, et al. Absolute myocardial blood flow and flow reserve assessed by gated SPECT with cadmium–zinc–telluride detectors using 99mTc-tetrofosmin: Head-to-head comparison with 13N-ammonia PET. J Nucl Med 2016;57:1887-1892.
Agostini D, Roule V, Nganoa C, et al. First validation of myocardial flow reserve assessed by dynamic 99mTc-sestamibi CZT-SPECT camera: head to head comparison with 15O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study. Eur J Nucl Med Mol Imaging 2018;45:1079-1090.
Zavadovsky KV, Mochula AV, Maltseva AN, et al. The current status of CZT SPECT myocardial blood flow and reserve assessment: Tips and tricks. J Nucl Cardiol 2022;29:3137-3151.
Ko KY, Ko CL, Lee CM, et al. Myocardial Flow Assessment After Heart Transplantation Using Dynamic Cadmium-Zinc-Telluride Single-Photon Emission Computed Tomography With 201Tl and 99mTc Tracers and Validated by 13N-NH3 Positron Emission Tomography. Circ Cardiovasc Imaging 2023;16:e015034.
Dahlberg ST, Gilmore MP, Leppo JA. Interaction of technetium 99m-labeled teboroxime with red blood cells reduces the compound’s extraction and increases apparent cardiac washout. J Nucl Cardiol 1994;1:270-279.
Liu M, Liu S. 99mTc-3Cboroxime: a novel 99mTc(iii) complex [99mTcCl(CDO)(CDOH)2B-3C] (CDOH2 = cyclohexanedione dioxime; 3C-B(OH)2 = 3-(carbamoylphenyl)boronic acid) with high heart uptake and long myocardial retention. Dalton Trans 2017;46:14509-14518.
Boschi A, Uccelli L, Marvelli L, Cittanti C, Giganti M, Martini P. Technetium-99m radiopharmaceuticals for ideal myocardial perfusion imaging: Lost and found opportunities. Molecules 2022;27:1188.
Gambhir SS, Berman DS, Ziffer J, et al. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med 2009;50:635-643.
Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: design, system validation and future potential. Eur J Nucl Med Mol Imaging 2010;37:1887-1902.
Imbert L, Poussier S, Franken PR, et al. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J Nucl Med 2012;53:1897-1903.
Panjer M, Dobrolinska M, Wagenaar NRL, Slart RHJA. Diagnostic accuracy of dynamic CZT-SPECT in coronary artery disease. A systematic review and meta-analysis. J Nucl Cardiol 2022;29:1686-1697.
Mallet F, Poitrasson-Rivière A, Mariano-Goulart D, Agostini D, Manrique A. Measuring myocardial blood flow using dynamic myocardial perfusion SPECT: artifacts and pitfalls. J Nucl Cardiol 2023;30:2006-2017.
Hindorf C, Oddstig J, Hedeer F, Hansson MJ, Jögi J, Engblom H. Importance of correct patient positioning in myocardial perfusion SPECT when using a CZT camera. J Nucl Cardiol 2014;21:695-702.
Miyagawa M, Nishiyama Y, Uetani T, et al. Estimation of myocardial flow reserve utilizing an ultrafast cardiac SPECT: Comparison with coronary angiography, fractional flow reserve, and the SYNTAX score. Int J Cardiol 2017;244:347-353.
Bailly M, Thibault F, Metrard G, et al. Precision of Myocardial Blood Flow and Flow Reserve Measurement During CZT SPECT Perfusion Imaging Processing: Intra-and Interobserver Variability. J Nucl Med 2023;64:260-265.
Wells RG, Marvin B, Poirier M, Renaud J, deKemp RA, Ruddy TD. Optimization of SPECT measurement of myocardial blood flow with corrections for attenuation, motion, and blood binding compared with PET. J Nucl Med 2017;58:2013-2019.
Koenders SS, van Dijk JD, Jager PL, Ottervanger JP, Slump CH, van Dalen JA. Impact of regadenoson-induced myocardial creep on dynamic rubidium-82 PET myocardial blood flow quantification. J Nucl Cardiol 2019;26:719-728.
Djaïleb L, De Leiris N, Canu M, et al. Regional CZT myocardial perfusion reserve for the detection of territories with simultaneously impaired CFR and IMR in patients without obstructive coronary artery disease: a pilot study. J Nucl Cardiol 2023;30:1656-1667.
Zampella E, Assante R, Acampa W. Myocardial perfusion reserve by CZT cameras: A journey inside coronary microvascular circulation. Is it time to leave yet? J Nucl Cardiol 2023;30:1668-1670.
Hirschfeld CB, Mercuri M, Pascual TN, et al. Worldwide variation in the use of nuclear cardiology camera technology, reconstruction software, and imaging protocols. JACC Cardiovasc Imaging 2021;14:1819-1828.
Shiraishi S, Tsuda N, Sakamoto F, et al. Clinical usefulness of quantification of myocardial blood flow and flow reserve using CZT-SPECT for detecting coronary artery disease in patients with normal stress perfusion imaging. J Cardiol 2020;75:400-409.
Sianos G, Morel MA, Kappetein AP, et al. The SYNTAX Score: an angiographic tool grading the complexity of coronary artery disease. EuroIntervention 2005;1:219-227.
Escaned J, Collet C, Ryan N, et al. Clinical outcomes of state-of-the-art percutaneous coronary revascularization in patients with de novo three vessel disease: 1-year results of the SYNTAX II study. Eur Heart J 2017;38:3124-3134.
Cavalcante R, Onuma Y, Sotomi Y, et al. Non-invasive Heart Team assessment of multivessel coronary disease with coronary computed tomography angiography based on SYNTAX score II treatment recommendations: design and rationale of the randomised SYNTAX III Revolution trial. EuroIntervention 2017;12:2001-2008.
Gensini GG. A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol 1983;51:606.
Bailly M, Thibault F, Courtehoux M, Metrard G, Angoulvant D, Ribeiro MJ. Myocardial flow reserve measurement during CZT-SPECT perfusion imaging for coronary artery disease screening: correlation with clinical findings and invasive coronary angiography-the CFR-OR study. Front Med (Lausanne) 2021;8:691893.
Sun R, Ma R, Wang M, et al. Prognostic value of myocardial flow reserve derived by quantitative SPECT for patients with intermediate coronary stenoses. J Nucl Cardiol 2023;30:1427-1436.
Driessen RS, Raijmakers PG, Stuijfzand WJ, Knaapen P. Myocardial perfusion imaging with PET. Int J Cardiovasc Imaging 2017;33:1021-1031.
Genovesi D, Giorgetti A, Gimelli A, et al. Impact of attenuation correction and gated acquisition in SPECT myocardial perfusion imaging: results of the multicentre SPAG (SPECT Attenuation Correction vs Gated) study. Eur J Nucl Med Mol Imaging 2011;38:1890-1898.
Slomka P, Berman DS, Germano G. Myocardial blood flow from SPECT. J Nucl Cardiol 2017;24:278-281.
Knaapen P, Lubberink M. Cardiac positron emission tomography: myocardial perfusion and metabolism in clinical practice. Clin Res Cardiol 2008;97:791-796.
Murthy VL, Naya M, Foster CR, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation 2011;124:2215-2224.
Gould KL, Johnson NP, Bateman TM, et al. Anatomic versus physiologic assessment of coronary artery disease: role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol 2013;62:1639-1653.
Schindler TH, Schelbert HR, Quercioli A, Dilsizian V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging 2010;3:623-640.
Heller GV, Hendel RC. Handbook of Nuclear Cardiology: Cardiac SPECT and Cardiac PET: Springer Science & Business Media; 2012.
Maddahi J, Packard RR. Cardiac PET perfusion tracers: current status and future directions. Semin Nucl Med 2014;44:333-343.
Rischpler C, Park MJ, Fung GS, Javadi M, Tsui BM, Higuchi T. Advances in PET myocardial perfusion imaging: F-18 labeled tracers. Ann Nucl Med 2012;26:1-6.
Huisman MC, Higuchi T, Reder S, et al. Initial characterization of an 18F-labeled myocardial perfusion tracer. J Nucl Med 2008;49:630-636.
Love W, Burch G. Influence of the rate of coronary plasma flow on the extraction of Rb86 from coronary blood. Circ Res 1959;7:24-30.
Danad I, Raijmakers PG, Appelman YE, et al. Hybrid imaging using quantitattive H215O PET and CT-based coronary angiography for the detection of coronary artery disease. J Nucl Med 2013;54:55-63.
Kajander S, Joutsiniemi E, Sarate M, et al. Cardiac positron emisssion tomography/computed tomography imaging accurately detecs anatomically and functionally significant coronay artery disease. Circulation 2010;122:603-613.
Sciagra R, Lubberink M, Hyafil F, et al. EANM procedural guidelines for PET/CT quantitative myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 2021;48:1040-1069.
Brophey MD, Farukhi IM, Castanon R, DeLaPena R, Bradshaw L, Banerjee S. Accuracy of 82Rb PET/CT Myocardial Perfusion Imaging with Regadenoson Stress, Including 3-Year Clinical Outcomes. J Nucl Med Technol 2017;45:75-81.
Hsiao E, Ali B, Blankstein R, et al. Detection of obstructive coronary artery disease using regadenoson stress and 82Rb PET/CT myocardial perfusion imaging. J Nucl Med 2013;54:1748-1754.
Dorbala S, Hachamovitch R, Curillova Z, et al. Incremental prognostic value of gated Rb-82 positron emission tomography myocardial perfusion imaging over clinical variables and rest LVEF. JACC Cardiovasc Imaging 2009;2:846-854.
Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, Di Carli MF. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: a 82Rb PET/CT study. J Nucl Med 2007;48:349-358.
Harms HJ, Knaapen P, de Haan S, Halbmeijer R, Lammertsma AA, Lubberink M. Automatic generation of absolute myocardial blood flow images using [15O]H2O and a clinical PET/CT scanner. Eur J Nucl Med Mol Imaging 2011;38:930-939.
Nesterov SV, Han C, Mäki M, et al. Myocardial perfusion quantitation with O-15 labelled water PET:high reproducibility of new cardiac analysis software (Carimas). Eur J Nucl Med Mol Imaging 2009;36:1594-1602.
Murthy VL, Bateman TM, Beanlands RS, et al. Clinical quantification of myocardial blood flow using PET: joint position paper of the SNMMI Cardiovascular Council and the ASNC. J Nucl Med 2018;59:273-293.
Gould KL, Johnson NP, Bateman TM, et al. Anatomic versus physiologic assessment of coro- nary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission to- mography imaging in revascularization decision- making. J Am Coll Cardiol 2013;62:1639-1653.
Jaarsma C, Leiner T, Bekkers SC, et al. Diagnostic performance of noninvasive myocardial perfusion imaging using single-pho- ton emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol 2012;59:1719-1728.
Mc Ardle BA, Dowsley TF, deKemp RA, Wells GA, Beanlands RS. Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coro- nary disease?: A systematic review and meta-analysis. J Am Coll Cardiol 2012;60:1828-1837.
Takx RA, Blomberg BA, El AH, et al. Diagnostic accuracy of stress myo- cardial perfusion imaging compared to invasive coronary angi- ography with fractional flow reserve meta-analysis. Circulation 2015;8:e002666.
Bateman TM, Heller GV, McGhie A, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: Comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 2006;13:24-33.
Yoshinaga K, Katoh C, Manabe O, et al. Incremental diagnostic value of regional myocardial blood flow quantification over relative perfusion imaging with generator- produced rubidium-82 PET. Circ J 2011;75:2628-2634.
Muzik O, Duvernoy C, Beanlands RS, et al. Assessment of diagnostic per- formance of quantitative flow measurements in normal subjects and patients with angiographically documented coronary artery disease by means of nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol 1998;31:534-540.
Hajjiri MM, Leavitt MB, Zheng H, Spooner AE, Fischman AJ, Gewirtz H. Comparison of positron emission tomography measurement of adenosine-stimulated absolute myocardial blood flow versus relative myocardial tracer content for physiological assessment of coronary artery stenosis severity and location. JACC Cardiovasc Imaging 2009;2:751-758.
Kajander SA, Joutsiniemi E, Saraste M, et al. Clinical value of absolute quantification of myocardial perfusion with (15)O-water in coronary artery disease. Circ Cardiovasc Imaging 2011;4:678-684.
Fiechter M, Ghadri JR, Gebhard C, et al. iagnostic value of 13N-ammonia myocardial perfusion PET: added value of myocardial flow reserve. J Nucl Med 2012;53:1230-1234.
Ziadi MC, deKemp RA, Williams K, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detec- tion of multivessel coronary artery disease? J Nucl Cardiol 2012;19:670-680.
Danad I, Uusitalo V, Kero T, et al. Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: cutoff values and diagnostic accuracy of quantitative [(15)O]H2O PET imaging. J Am Coll Cardiol 2014;64:1464-1475.
Joutsiniemi E, Saraste A, Pietilä M, et al. Absolute flow or myocardial flow reserve for the detection of significant coronary artery disease? Eur Heart J Cardiovasc Imaging 2014;15:659-665.
Danad I, Raijmakers PG, Harms HJ, et al. Impact of anatomical and functional severity of coronary atherosclerotic plaques on the transmural perfusion gradient: a [15O]H2O PET study. Eur Heart J 2014;35:2094-2105.
Dorbala S, Di Carli MF, Beanlands RS, et al. Prognostic value of stress myocardial perfusion positron emission tomography: results from a multicenter obser- vational registry. J Am Coll Cardiol 2013;61:176-184.
Yoshinaga K, Chow BJ, Williams K, et al. What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol 2006;48:1029-1039.
Herzog BA, Husmann L, Valenta I, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emisssion tomography added value of coronary flow reserve. J Am Coll Cardiol 2009;54:150-156.
Ziadi MC, Dekemp RA, Williams KA, et al. Impaired myocardial flow reserve on rubidium-82 positron emisssion tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol 2011;58:740-748.
Murthy VL, Naya M, Foster CR, et al. Improved cardiac risk assessment with noninvasive measures of coronary floe reserve. Circulation 2011;124:2215-2224.
2024 ©️ Galenos Publishing House