Guidelines for Myocardial Viability Imaging with F-18 FDG
PDF
Cite
Share
Request
Guideline
P: 171-183
July 2020

Guidelines for Myocardial Viability Imaging with F-18 FDG

Nucl Med Semin 2020;6(2):171-183
1. Onsekiz Mart Üniversitesi Tıp Fakültesi, Nükleer Tıp Anabilim Dalı, Çanakkale, Türkiye
2. Ondokuz Mayıs Üniversitesi Tıp Fakültesi, Nükleer Tıp Anabilim Dalı, Samsun, Türkiye
3. Kocaeli Üniversitesi Tıp Fakültesi, Nükleer Tıp Anabilim Dalı, İzmit, Türkiye
4. Trakya Üniversitesi Tıp Fakültesi, Nükleer Tıp Anabilim Dalı, Edirne, Türkiye
5. Ankara Yıldırım Beyazıt Üniversitesi Tıp Fakültesi, Nükleer Tıp Anabilim Dalı, Ankara, Türkiye
6. Uludağ Üniversitesi Tıp Fakültesi, Nükleer Tıp Anabilim Dalı, Bursa, Türkiye
No information available.
No information available
Publish Date: 25.08.2020
PDF
Cite
Share
Request

ABSTRACT

Myocardial viability imaging with Fluorine-18 fluorodeoxyglucose (F-18 FDG) positron emission tomography/computed tomography (PET/CT), in patients who are appropriate for coronary revascularization, in the presence of left ventricular dysfunction and rest myocardial perfusion defect due to coronary artery disease, has become a frequently used method to differentiate viable myocardial (hibernating) and non-viable myocardial tissues (scar). This guideline, has been prepared by Turkey Society of Nuclear Medicine Cardiology Working Group to provide a standart approach to cardiac viability imaging with F-18 FDG PET/CT. For this purpose details on instrumentation and reporting are summarized and all presented suggestions are submitted by evaluating the international guidelines and current literature.

References

1
Chanda D, Luiken JJ, Glatz JF. Signaling pathways involved in cardiac energy metabolism. FEBS Lett 2016;590:2364-2374.
2
Shao D, Tian R. Glucose transporters in cardiac metabolism and hypertrophy. Compr Physiol 2015;6:331-351.
3
Wolf P, Winhofer Y, Krssak M, et al. Suppression of plasma free fatty acids reduces myocardial lipid content and systolic function in type 2 diabetes. Nutr Metab Cardiovasc Dis 2016;26:387-392.
4
Fillmore N, Mori J, Lopaschuk GD. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol 2014;171:2080-2090.
5
Azevedo PS, Minicucci MF, Santos PP, et al. Energy metabolism in cardiac remodeling and heart failure. CardiolRev 2013;21:135-140.
6
Elfigih IA, Henein MY. Non-invasive imaging in detecting myocardial viability: Myocardial function versus perfusion. IJC Heart Vasculature 2014;5:51-56.
7
Lehtinen M, Schildt J, Ahonen A, et al. Helsinki BMMC Collaboration. Combining FDG-PET and 99mTc-SPECT to predict function aloutcome after coronary artery bypass surgery. EurHeart J CardiovascImaging 2015;16:1023-1030.
8
Bacharach SL, Bax JJ, Case J, et al. PET myocardial glucose metabolism and perfusion imaging: Part 1-Guidelines for data acquisition and patient preparation. J Nucl Cardiol 2003;10:543-556.
9
Wahl RL, Robert SB. Principlesand and Practice of PET and PET/CT. 2nd Edition. Chapter 11.2. Myocardial Viability. Lippincott Williams and Wilkins 2008;565-588.
10
Hansen AK, Gejl M, Bouchelouche K, et al. Reverse Mismatch Pattern in Cardiac 18F-FDG Viability PET/CT Is Not Associated With Poor Outcome of Revascularization: A Retrospective Outcome Study of 91 Patients With Heart Failure. Clin Nucl Med 2016;41:428-435.
11
Ghosh N, Rimoldi OE, Beanlands RS, et al. Assessment of myocardial ischaemia andviability: role of positronemissiontomography. EurHeart J 2010;31:2984-2995.
12
Kobylecka M, Mączewska J, Fronczewska-Wieniawska K, et al. Myocardial viability assessment in 18 FDG PET/CT study. Nucl Med Rev Cent East Eur 2012;15:52-60.
13
Dorbala S, DiCarli MF, Delbeke D, et al. SNMMI/ASNC/SCCT guideline for cardiac SPECT/CT and PET/CT 1.0. J NuclMed 2013;54:1485-507.
14
Bhat A, Gan GC, Tan TC, et al. Myocardial viability: From proof of conceptto clinical practice. Cardiol Res Pract 2016;2016:1020818.
15
Ferrari R, Balla C, Malagù M, et al. Reperfusion damage-A story of success, failure and hope. Circ J 2017;81:131-141.
16
Dilsizian V, Bacharach SL, Beanlands RS, et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J NuclCardiol 2016;23:1187-1226.
17
Lin E C, Alavi A. Çeviri Editörleri: Basoğlu T, Mavi A. PET ve PET-BT Klinik Kılavuzu. Bölüm 30. Kardiyak PET ve PET-BT. Habitat Yayıncılık 2009;2:263-274.
18
Dilsizian V, Bacharach SL, Beanlands RS, et al. ASNC imaging guidelines for nuclear cardiology procedures: PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol 2009. doi:10.1007/s12350-009-9094-9. 
19
Vitale GD, deKemp RA, Ruddy TD, et al. Myocardial glucose utilization and optimization of (18)F-FDG PET imaging in patients with non-insulin-dependent Diabetes Mellitus, coronary artery disease, and left ventricular dysfunction. J NuclMed 2001;42:1730-1736.
20
Kam BL, Valkema R, Poldermans D, et al. Feasibility and image quality of dual-isotope SPECT using 18F-FDG and (99m) Tc-tetrafosmin after acipimox administration. J NucMed 2003;44:140-145.
21
Yamakawa Y, Takahashi N, Ishikawa T, et al. Clinical usefulness of ECG-gated 18F-FDG PET combined with 99mTC-MIBI gated SPECT for evaluating myocardial viability and function. Ann Nucl Med 2004;18:375-383.
22
Goel PK, Bhatia T, Kapoor A, et al. Left ventricular remodeling after late revascularization correlates with baseline viability. Tex Heart Inst J 2014;41:381-388.
23
Dong W, Li J, Mi H, et al. Relationship between collateral circulation and myocardial viability of 18F-FDG PET/CT subtended by chronic total occluded coronary arteries. Ann Nucl Med 2018;32:197-205.
24
Kıraç FS. Kardiyak PET Perfüzyon ve Viyabilite Çalışmaları. Turkiye Klinikleri J Nucl Med-Special Topics 2015;1:31-40.
25
Zhang F, Yang W, Wang Y, et al. Is there an association between hibernating myocardium and left ventricular mec-hanical dyssynchrony in patients with myocardial infarction? Hell J Nucl Med 2018;21:28-34.