Nuclear Medicine in Bone and Soft Tissue Infections: Current Situation with SPECT and PET
PDF
Cite
Share
Request
Review
P: 43-58
March 2022

Nuclear Medicine in Bone and Soft Tissue Infections: Current Situation with SPECT and PET

Nucl Med Semin 2022;8(1):43-58
1. Sağlık Bilimleri Üniversitesi, Antalya Eğitim ve Araştırma Hastanesi, Nükleer Tıp Kliniği, Antalya, Türkiye
2. Akdeniz Üniversitesi Tıp Fakültesi Hastanesi, Nükleer Tıp Anabilim Dalı, Antalya, Türkiye
No information available.
No information available
Publish Date: 15.04.2022
PDF
Cite
Share
Request

ABSTRACT

Diagnosis and treatment of bone and soft tissue infections are more difficult than other infections. Since there is no single specific diagnostic method, a multidisciplinary approach is required in which clinical, laboratory, microbiological/histopathological and imaging methods are used together. Direct radiographs, computed tomography (CT) and magnetic resonance imaging are radiological methods used in diagnosis and provide diagnostic benefit through anatomical changes. Radionuclide imaging, on the other hand, allows functional and metabolic evaluation and early detection of the disease before anatomical changes occur. The main nuclear medicine methods used in musculoskeletal infections are three-phase bone scintigraphy (TPBS), Gallium-67 (Ga-67) citrate scintigraphy, and labeled leukocyte scintigraphy (LLs). Each test has some limitations. Although TPBS is a sensitive test, it has low specificity, especially in the presence of underlying bone anomalies. Ga-67 citrate has a long injection-imaging interval and may show false positive uptake in cases of tumor, trauma, and aseptic inflammation. It is primarily preferred in spine infections. LLs is the first preferred imaging method in cases of complicated osteomyelitis except spinal infections. However, it is a laborious process that requires equipped personnel-environment and sterility, and it should be evaluated together with bone marrow scintigraphy for optimal diagnosis. Although new alternative in vivo labeling methods such as labeled antigranulocyte antibodies and antibody fragments have been investigated, they have not been used routinely due to some limitations. In recent years, with the combination of these conventional methods with single photon emission computed tomography (SPECT/CT) and the introduction of 2-F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET/CT), significant improvements in diagnostic accuracy and reliability have been achieved. SPECT/CT allows the correct anatomical localization of the involvement area, accurate detection of the spread of infection, and especially the differentiation of bone-soft tissue infections. FDG PET/CT has high sensitivity and negative predictive value, especially in the diagnosis of spinal infections. It also has high diagnostic sensitivity in patients with metallic implants. Although it is also used in diabetic foot infections, its effectiveness is lower. Its use is also increasing in skull base osteomyelitis. Studies are still ongoing to develop more specific new PET pharmaceuticals such as Ga-68 citrate, 6''-F-18 fuoromaltotriose, F-18 F-p-Aminobenzoic acid (F-PABA) and iodine-124 fialuridine (I-124 FIAU).

References

1Love C, Palestro CJ. Nuclear medicine imaging of bone infections. Clin Radiol 2016;71:632-646.
2Palestro CJ. Radionuclide imaging of osteomyelitis. Sem Nucl Med 2015;45:32-46.
3Ziessman H, O’Malley J, Thrall J. Nuclear Medicine: The Reguisities. 4th ed. Philadelphia, Elseiver 2014.
4Hoffer P. Gallium and infection. J Nucl Med 1980;21:484-488.
5Palestro CJ, Love C, Bhargava KK. Labeled leukocyte imaging: current status and future directions. Q J Nucl Med Mol Imaging 2009;53:105e23.
6Kim EE, Pjura GA, Lowry PA, Gobuty AH, Traina JE. Osteomyelitis complicating fracture: pitfalls of 111-In leukocyte scintigraphy. AJR Am J Roentgenol 1987;148:927-930.
7Signore A, Jamar F, Israel O, Buscombe J, Martin-Comin J, Lazzeri E. Clinical indications, image acquisition and data interpretation for white blood cells and anti-granulocyte monoclonal antibody scintigraphy: an EANM procedural guideline. Eur J Nucl Med Mol Imaging 2018;45:1816-1831.
8Palestro CJ, Love C, Tronco GG, Tomas MB, Rini JN. Combined labeled leukocyte and technetium 99m sulfur colloid bone marrow imaging for diagnosing musculoskeletal infection. Radiographics 2006;26:859-870.
9Lazzeri E, Signore A, Erba PA, et al. Radionuclide imaging of infection and inflammation. A pictorial case-based atlas. Italy: SpringerVerlag Italia 2013; p. 7.
10Glaudemans AWJM, de Vries EFJ, Vermeulen LEM, Slart RHJA, Dierckx RAJO, Signore A. A large retrospective single centre study to define best image acquisition protocols and interpretation criteria for white blood cell scintigraphy with 99Tc- HMPAO labelled leukocytes in musculoskeletal infections. Eur J Nucl Med Mol Imaging 2013;40:1760-1769.
11Palestro CJ, Glaudemans AWJM, Dierckx RAJO. Multiagent imaging of inflammation and infection with radionuclides. Clin Transl Imaging 2013;1:385-396.
12Kiamanesh Z, Ayati N, Alavi R, Gharehdaghi M, Aryana K. Application of 99mTc-UBI 29-41 scintigraphy in knee periprosthetic infection diagnosis. Nuklearmedizin 2019;58:301-308.
13Vilche MB, Reyes AL, Vasilskis E, Oliver P, Balter HS, Engler HW. 68GaNOTA-UBI 29-41 as a PET tracer for detection of bacterial infection. J Nucl Med 2016;57:622-627.
14Naqvi SAR, Roohi S, Sabir H, Shahzad SA, Aziz A, Rasheed R. Susceptibility of 99mTc-ciprofloxacin for common infection causing bacterial strains isolated from clinical samples: an in vitro and in vivo study. Appl Biochem Biotechnol 2019;188:424-435.
15Rini JN, Bhargava KK, Tronco GG, et al. PET with FDG-labeled leukocytes versus scintigraphy with 111In-oxine-labeled leukocytes for detection of infection. Radiology 2006;238:978-987.
16Yilmaz S, Aliyev A, Ekmekcioglu O, et al. Comparison of FDG and FDG-labeled leukocytes PET/CT in diagnosis of infection. Nuklearmedizin 2015;54:262-271.
17Ebenhan T, Zeevaart JR, Venter JD, et al. Preclinical evaluation of 68Galabeled 1, 4, 7-triazacyclononane1, 4, 7-triacetic acid ubiquicidin as a radioligand for PET infection imaging. J Nucl Med 2014;55:308-314.
18Diaz LA, Foss CA, Thornton K, et al. Imaging of musculoskeletal bacterial infections by [124I]FIAU-PET/CT. PLoS One 2007;10:e1007.
19Zhang XM, Zhang HH, McLeroth P, et al. [124I] FIAU. Human dosimetry and infection imaging in patients with suspected prosthetic joint infection. Nucl Med Biol 2016;43:273-279.
20van der Bruggen W, Bleeker-Rovers CP, Boerman OC, Gotthardt M, Oyen WJ. PET and SPECT in osteomyelitis and prosthetic bone and joint infections: a systematic review. Semin Nucl Med 2010;40:3-15.
21Palestro CJ, Love C, Miller TT. Imaging of musculoskeletal infections. Best Pract Res Clin Rheumatol 2006;20:1197-1218.
22Govaert GA, IJpma FF, McNally M, McNally E, Reininga IH, Glaudemans AW. Accuracy of diagnostic imaging modalities for peripheral posttraumatic osteomyelitis - a systematic review of the recent literature. Eur J Nucl Med Mol Imaging 2017;44:1393-1407.
23Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 2008;248:254e263.
24Beaman FD, von Herrmann PF, Kransdorf MJ, et al. ACR appropriateness criteria((R)) suspected osteomyelitis, septic arthritis, or soft tissue infection (excluding spine and diabetic foot). J Am Coll Radiol 2017;14:S326eS337.
25Glaudemans AWJM, Jutte PC, Cataldo MA, et al. Consensus document for the diagnosis of peripheral bone infection in adults: a joint paper by the EANM, EBJIS, and ESR (with ESCMID endorsement). Eur J Nucl Med Mol Imaging 2019;46:957-970.
26Prandini N, Lazzeri E, Rossi B, Erba P, Parisella MG, Signore A. Nuclear medicine imaging of bone infections. Nucl Med Commun 2006;27:633-644.
27Wang GL, Zhao K, Liu ZF, Dong MJ, Yang SY. A meta-analysis of fluorodeoxyglucose-positron emission tomography versus scintigraphy in the evaluation of suspected osteomyelitis. Nucl Med Commun 2011;32:1134-1142.
28Loessel C, Mai A, Starke M, Vogt D, Stichling M, Willy C. Value of antigranulocyte scintigraphy with Tc-99m-sulesomab in diagnosing combatrelated infections of the musculoskeletal system. BMJ Mil Health 2021;167:8-17.
29Song Q, Long L, Cui S, et al. Utility of technetium99m-methylene diphosphonate single-photon emission computed tomography/computed tomography fusion in detecting post-traumatic chronic-infected nonunion in the lower limb. Nucl Med Commun 2019;40:778-785.
30Horger M, Eschmann SM, Pfannenberg C, et al. The value of SPET/CT in chronic osteomyelitis. Eur J Nucl Med Mol Imaging 2003;30:1665-1673.
31Yang F, Yang Z, Feng J, Zhang L, Ma D, Yang J. Three phase bone scintigraphy with (99m)Tc-MDP and serological indices in detecting infection after internal fixation in malunion or nonunion traumatic fractures. Hell J Nucl Med 2016;19:130-134.
32Kim C, Lee SJ, Kim JY, Hwang KT, Choi YY. Comparative analysis of 99mTc-MDP three-phase bone scan with SPECT/CT and 99mTcHMPAO-labeled WBC SPECT/CT in the differential diagnosis of clinically suspicious post-traumatic osteomyelitis. Nucl Med Mol Imaging 2017;51:40-48.
33Plate A, Weichselbaumer V, Schüpbach R, et al. Diagnostic accuracy of 99mTc-antigranulocyte SPECT/ CT in patients with osteomyelitis and orthopaedic device-related infections: a retrospective analysis. Int J Infect Dis 2020;91:79-86.
34Govaert GAM, Bosch P, IJpma FFA, et al. High diagnostic accuracy of white blood cell scintigraphy for fracture related infections: Results of a large retrospective single-center study. Injury 2018;49:1085-1090.
35Gemmel F, Van den Broeck B, Vanelstraete S, Van Innis B, Huysse W. Hybrid imaging of complicating osteomyelitis in the peripheral skeleton. Nucl Med Commun 2021;42:941-950.
36de Winter F, van de Wiele C, Vogelaers D, de Smet K, Verdonk R, Dierckx RA. Fluorine-18 fluorodeoxyglucose-position emission tomography: a highly accurate imaging modality for the diagnosis of chronic musculoskeletal infections. J Bone Joint Surg Am 2001;83:651-660.
37Hartmann A, Eid K, Dora C, Trentz O, von Schulthess GK, Stumpe KDM. Diagnostic value of 18F-FDG PET/CT in trauma patients with suspected chronic osteomyelitis. Eur J Nucl Med Mol Imaging 2007;34:704-714.
38Wenter V, Müller JP, Albert NL, et al. The diagnostic value of [(18)F]FDG PET for the detection of chronic osteomyelitis and implant-associated infection. Eur J Nucl Med Mol Imaging 2016;43:749-761.
39Govaert GAM, Kuehl R, Atkins BL, et al. Fracture-Related Infection (FRI) Consensus Group. Diagnosing fracture-related infection: current concepts and recommendations. J Orthop Trauma 2020;34:8-17.  
40Schiesser M, Stumpe KD, Trentz O, Kossmann T, Von Schulthess GK. Detection of metallic implantassociated infections with FDG PET in patients with trauma: correlation with microbiologic results. Radiology 2003;226:391e8.
41Connolly CM, Donohoe KJ. Nuclear medicine imaging of infection. Semin Roentgenol 2017;52:114e119.
42Seltzer A, Xiao R, Fernandez M, Hasija R. Role of nuclear medicine imaging in evaluation of orthopedic infections, current concepts. J Clin Orthop Trauma 2019;10:721-732.
43Palestro CJ, Torres MA. Radionuclide imaging in orthopedic infections. Semin Nucl Med 1997;27:334e345.
44Şahin Ö, Serdengeçti M, Uğur Ö. Kas-iskelet sistemi enfeksiyonlarında nükleer tıp ve görüntüleme. Totbid Dergisi 2020;19:713-731.
45Glaudemans AW, Prandini N, DI Girolamo M, et al. Hybrid imaging of musculoskeletal infections. Q J Nucl Med Mol Imaging 2018;62:3-13.
46Gouliouris T, Aliyu SH, Brown NM. Spondylodiscitis: update on diagnosis and management. J Antimicrob Chemother 2010;65(suppl 3):iii11-iii24.
47Raghavan M, Lazzeri E, Palestro CJ. Imaging of spondylodiscitis. Semin Nucl Med 2018;48:131-147.
48Berbari EF, Kanj SS, Kowalski TJ, et al. Infectious Diseases Society of America 2015 Infectious Diseases Society of America (IDSA) clinical practice guidelines for the diagnosis and treatment of native vertebral osteomyelitis in adults. Clin Infect Dis 2015;61:e26-46.
49Love C, Patel M, Lonner BS, Tomas MB, Palestro CJ. Diagnosing spinal osteomyelitis: a comparison of bone and gallium scintigraphy and magnetic resonance imaging. Clin Nucl Med 2002;25:963e77.
50Gemmel F, Dumarey N, Palestro CJ. Radionuclide imaging of spinal infections. Eur J Nucl Med Mol Imaging 2006;33:1226e37.
51Fuster D, Solà O, Soriano A, et al. A prospective study comparing whole-body FDG PET/CT to combined planar bone scan with 67Ga SPECT/CT in the diagnosis of spondylodiskitis. Clin Nucl Med 2012;37:827-832.
52Domínguez ML, Lorente R, Rayo JI, et al. SPECT-CT with (67)Ga-citrate in the management of spondylodiscitis. Rev Esp Med Nucl Imagen Mol 2012;31:34e9.
53Lazzeri E, Erba P, Perri M, et al. Scintigraphic imaging of vertebral osteomyelitis with 111 in-biotin. Spine 2008;33:E198204.
54Guhlmann A, Brecht-Krauss D, Suger G, et al. Fluorine-18-FDG PET and technetium-99m antigranulocyte antibody scintigraphy in chronic osteomyelitis. J Nucl Med 1998;39:2145-2152.
55Gratz S, Dorner J, Fischer U, et al. F-18-FDG hybrid PET in patients with suspected spondylitis. Eur J Nucl Med Mol Imaging 2002;29:516-524.
56Kim SJ, Pak K, Kim K, Lee JS. Comparing the Diagnostic Accuracies of F-18 Fluorodeoxyglucose Positron Emission Tomography and Magnetic Resonance Imaging for the Detection of Spondylodiscitis: A Meta-analysis. Spine 2019;44:E414-22.
57Stumpe KD, Zanetti M, Weishaupt D, Hodler J, Boos N, Von Schulthess GK. FDG positron emission tomography for differentiation of degenerative and infectious endplate abnormalities in the lumbar spine detected on MR imaging. AJR Am J Roentgenol 2002;179:1151-1157.
58Hungenbach S, Delank KS, Dietlein M, Eysel P, Drzezga A, Schmidt MC. 18F-fluorodeoxyglucose uptake pattern in patients with suspected spondylodiscitis. Nucl Med Commun 2013;34:1068-1074.
59Gunes BY, Onsel C, Sonmezoglu K, et al. Diagnostic value of F-18 FDG PET/CT in patients with spondylodiscitis: Is dual time point imaging time worthy? Diagn Microbiol Infect Dis 2016;85:381-385.
60Ioannou S, Chatziioannou S, Pneumaticos SG, Zormpala A, Sipsas NV. Fluorine18 fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography scan contributes to the diagnosis and management of brucellar spondylodiskitis. BMC Infectious Diseases 2013;13:73.
61De Winter F, Gemmel F, Van De Wiele C, Poffijn B, Uyttendaele D, Dierckx R. 18-fluorine fluorodeoxyglucose positron emission tomography for the diagnosis of infection in the postoperative spine. Spine 2003;28:1314-1319.
62Inanami H, Oshima Y, Iwahori T, Takano Y, Koga H, Iwai H. Role of 18F-fluoro-deoxyglucose PET/CT in diagnosing surgical site infection after spine surgery with instrumentation. Spine 2015;40:109-113.
63Lazzeri E, Bozzao A, Cataldo MA, et al. Joint EANM/ESNR and ESCMID-endorsed consensus document for the diagnosis of spine infection (spondylodiscitis) in adults. Eur J Nucl Med Mol Imaging 2019;46:2464-2487.
64Riccio SA, Chu AK, Rabin HR, Kloiber R. Fluorodeoxyglucose positron emission tomography/computed tomography interpretation criteria for assessment of antibiotic treatment response in pyogenic spine infection. Can Assoc Radiol J 2015;66:145-152.
65Skanjeti A, Penna D, Douroukas A, et al. PET in the clinical work-up of patients with spondylodiscitis: a new tool for the clinician? Q J Nucl Med Mol Imaging 2012;56:569-576.
66Nanni C, Errani C, Boriani L, et al. 68Ga-Citrate PET/CT for evaluating patients with infections of the bone: preliminary results. J Nucl Med 2010;51:1932-1936.
67Asti M, Iori M, Erba P, et al. Radiosynthesis of 68Ga-labelled DOTAbiocytin (68Ga-r-BHD) and assessment of its pharmaceutical quality for clinical use. Nucl Med Commun 2012;33:1179-1187.
68Palestro CJ, Love C. Nuclear medicine and diabetic foot infections. Sem Nucl Med 2009;39:52-65.
69Donovan A, Schweitzer ME. Use of MR imaging in diagnosing diabetes- related pedal osteomyelitis. Radiographics 2010;30:723-736.
70Palestro CJ. Radionuclide imaging of musculoskeletal infection: A Review. J Nucl Med 2016;57:1406-1412.
71Palestro CJ. Molecular imaging of diabetic foot infections. Nucl Med Semin 2016;2:95-103.
72Filippi L, Uccioli L, Giurato L, Schillaci O. Diabetic foot infection: usefulness of SPECT/CT for 99mTc-HMPAO-labeled leukocyte imaging. J Nucl Med 2009;50:1042e6.
73Heiba SI, Kolker D, Mocherla B, et al. The optimized evaluation of diabetic foot infection by dual isotope SPECT/CT imaging protocol. J Foot Ankle Surg 2010;49:529e36.
74Heiba S, Knešaurek K. Evaluation of diabetic foot infection in nuclear medicine. Q J Nucl Med Mol Imaging 2017;61:283-291.
75Heiba S, Kolker D, Ong L, et al. Dual-isotope SPECT/CT impact on hospitalized patients with suspected diabetic foot infection: saving limbs, lives, and resources. Nucl Med Commun 2013;34:877-884.
76Vouillarmet J, Moret M, Morelec I, Michon P, Dubreuil J. Application of white blood cell SPECT/CT to predict remission after a 6 or 12 week course of antibiotic treatment for diabetic foot osteomyelitis. Diabetologia 2017;60:2486-2494.
77Lazaga F, Van Asten SA, Nichols A, et al. Hybrid imaging with 99mTc-WBC SPECT/CT to monitor the effect of therapy in diabetic foot osteomyelitis. Int Wound J 2016;13:1158-1160.
78Aslangul E, M’bemba J, Caillat-Vigneron N, et al. Diagnosing diabetic foot osteomyelitis in patients without signs of soft tissue infection by coupling hybrid 67Ga SPECT/CT with bedside percutaneous bone puncture. Diabetes Care 2013;36:2203-2210.
79Dominguez-Gadea L, Martin-Curto LM, de la Calle H, Crespo A. Diabetic foot infections: scintigraphic evaluation with 99Tcm-labelled anti-granulocyte antibodies. Nucl Med Commun 1993;14:212-218.
80Rabkin Z, Israel O, Keidar Z. Do hyperglycemia and diabetes affect the incidence of false-negative 18F-FDG PET/CT studies in patients evaluated for infection or inflammation and cancer? A comparative analysis. J Nucl Med 2010;51:1015-1020.
81Yang H, Zhuang H, Rubello D, Alavi A. Mild-to-moderate hyperglycemia will not decrease the sensitivity of 18F-FDG PET imaging in the detection of pedal osteomyelitis in diabetic patients. Nucl Med Commun 2016;37:259-262.
82Treglia G, Sadeghib R, Annunziata S, et al. Diagnostic performance of fluorine- 18-fluorodeoxyglucose positron emission tomography for the diagnosis of osteomyelitis related to diabetic foot: a systematic review and a metaanalysis. Foot (Edinb) 2013;23:140-148.
83Nawaz A, Torigian DA, Siegelman ES, Basu S, Chryssikos T, Alavi A. Diagnostic performance of FDG-PET, MRI, and plain film radiography (PFR) for the diagnosis of osteomyelitis in the diabetic foot. Mol Imag Biol 2010;12:335-342.
84Basu S, Chryssikos T, Houseni M, et al. Potential role of FDG PET in the setting of diabetic neuroosteoarthropathy: can it differentiate uncomplicated Charcot’s neuroarthropathy from osteomyelitis and softtissue infection? Nucl Med Commun 2007;28:465-472.
85Höpfner S, Krolak C, Kessler S, et al. Preoperative imaging of Charcot neuroarthropathy in diabetic patients: comparison of ring PET, hybrid PET, and magnetic resonance imaging. Foot Ankle Int 2004;25:890-895.
86Schwegler B, Stumpe KD, Weishaupt D, et al. Unsuspected osteomyelitis is frequent in persistent diabetic foot ulcer and better diagnosed by MRI than by 18F-FDG PET or 99mTc-MOAB. J Intern Med 2008;263:99-106.
87Familiari D, Glaudemans AWJM, Vitale V, et al. Can sequential 18F-FDG PET/CT replace WBC imaging in the diabetic foot? J Nucl Med 2011;52:1012-1019.
88Nunez-Atahualpa L. Septic Arthritis Imaging 2016 May 12; 2016. February 20, 2019.
89Johnson JE, Kennedy EJ, Shereff MJ, Patel NC, Collier BD. Prospective study of bone, indium-111-labeled white blood cell, and gallium-67 scanning for the evaluation of osteomyelitis in the diabetic foot. Foot Ankle Int 1996;17:10-16.
90Sreepada GS, Kwartler JA. Skull base osteomyelitis secondary to malignant otitis externa. Curr Opin Otolaryngol Head Neck Surg 2003;11:316‑323.
91Devaney KO, Boschman CR, Willard SC, Ferlito A, Rinaldo A. Tumours of the external ear and temporal bone. Lancet Oncol 2005;6:411‑420.
92Chakraborty D, Bhattacharya A, Kamaleshwaran KK, Agrawal K, Gupta AK, Mittal BR. Single photon emission computed tomography/computed tomography of the skull in malignant otitis externa. Am J Otolaryngol 2012;33:128‑129.
93Younis JA. Additive value of 99mTechnetium methylene diphosphonate hybrid single-photon emission computed tomography/computed tomography in the diagnosis of skull base osteomyelitis in otitis externa patients compared to planar bone scintigraphy. World J Nucl Med 2018;17:286-292.
94Kulkarni SC, Padma S, Shanmuga Sundaram P. In the evaluation of patients with skull base osteomyelitis, does 18F-FDG PET CT have a role? Nucl Med Commun 2020;41:550-559.
95Chawdhary G, Pankhania M, Douglas S, Bottrill I. Current management of necrotising otitis externa in the UK: survey of 221 UK otolaryngologists. Acta Otolaryngol 2017;137:818-822.
96Driscoll CL, Lane JI. Advances in skull base imaging. Otolaryngol Clin North Am 2007;40:439-454, vii.
97Wong SSM, Wang K, Yuen EHY, Wong JKT, King A, Ahuja AT. Visual and quantitative analysis by gallium-67 single-photon emission computed tomography/computed tomography in the management of malignant otitis externa. Hong Kong J Radiol 2011;14:155-160.
98Zhuang HM, Cortés-Blanco A, Pourdehnad M, et al. Do high glucose levels have differential effect on FDG uptake in inflammatory and malignant disorders? Nucl Med Commun 2001;22:1123-1128.
99Namavari M, Gowrishankar G, Srinivasan A, Gambhir SS, Haywood T, Beinat C. A novel synthesis of 6’’-[18 F]-fluoromaltotriose as a PET tracer for imaging bacterial infection. J Labelled Comp Radiopharm 2018;61:408-414.
100Zhang Z, Ordonez AA, Wang H, et al. Positron Emission Tomography Imaging with 2-[18F]F- p-Aminobenzoic Acid Detects Staphylococcus aureus Infections and Monitors Drug Response. ACS Infect Dis 2018;4:1635-1644.
Article is only available in PDF format. Show PDF
2024 ©️ Galenos Publishing House